跳转至内容
Merck
CN
  • Intrathecal delivery of IL-6 reactivates the intrinsic growth capacity of pyramidal cells in the sensorimotor cortex after spinal cord injury.

Intrathecal delivery of IL-6 reactivates the intrinsic growth capacity of pyramidal cells in the sensorimotor cortex after spinal cord injury.

PloS one (2015-05-21)
Ping Yang, Yu Qin, Chen Bian, Yandong Zhao, Wen Zhang
摘要

We have previously demonstrated the growth-promoting effect of intrathecal delivery of recombinant rat IL-6 immediately after corticospinal tract (CST) injury. Our present study aims to further clarify whether intrathecal delivery of IL-6 after CST injury could reactivate the intrinsic growth capacity of pyramidal cells in the sensorimotor cortex which project long axons to the spinal cord. We examined, by ELISA, levels of cyclic adenosine monophosphate (cAMP), adenylyl cyclase (AC, which synthesizes cAMP), phosphodiesterases (PDE, which degrades cAMP), and, by RT-PCR, the expression of regeneration-associated genes in the rat sensorimotor cortex after intrathecal delivery of IL-6 for 7 days, started immediately after CST injury. Furthermore, we injected retrograde neuronal tracer Fluorogold (FG) to the spinal cord to label pyramidal cells in the sensorimotor cortex, layers V and VI, combined with βIII-tubulin immunostaining, then we analyzed by immunohistochemisty and western blot the expression of the co-receptor gp-130 of IL-6 family, and pSTAT3 and mTOR, downstream IL-6/JAK/STAT3 and PI3K/AKT/mTOR signaling pathways respectively. We showed that intrathecal delivery of IL-6 elevated cAMP level and upregulated the expression of regeneration-associated genes including GAP-43, SPRR1A, CAP-23 and JUN-B, and the expression of pSTAT3 and mTOR in pyramidal cells of the sensorimotor cortex. In contrast, AG490, an inhibitor of JAK, partially blocked these effects of IL-6. All these results indicate that intrathecal delivery of IL-6 immediately after spinal cord injury can reactivate the intrinsic growth capacity of pyramidal cells in the sensorimotor cortex and these effects of IL-6 were partially JAK/STAT3-dependent.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
十二烷基硫酸钠, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
十二烷基硫酸钠, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
氯化钠, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
十二烷基硫酸钠, ACS reagent, ≥99.0%
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, Molecular Biology, 10% in H2O
Sigma-Aldrich
十二烷基硫酸钠, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
乙二醇-双(2-氨基乙醚)-N,N,N′,N′-四乙酸, Molecular Biology, ≥97.0%
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
十二烷基硫酸钠, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, 20% in H2O
SAFC
氯化钠 溶液, 5 M
Supelco
十二烷基硫酸钠, dust-free pellets, suitable for electrophoresis, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
氯化钠, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
乙二醇-双(2-氨基乙醚)-N,N,N′,N′-四乙酸, ≥97.0%
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠 溶液, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
十二烷基硫酸钠, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
腺苷-3′,5′-环单磷酸, ≥98.5% (HPLC), powder
Sigma-Aldrich
十二烷基硫酸钠, ≥98.0% (GC)
Sigma-Aldrich
十二烷基硫酸钠, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
氯化钠 溶液, 0.85%
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
十二烷基硫酸钠, ≥90% ((Assay))
Sigma-Aldrich
十二烷基硫酸钠, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
乙二醇-双(2-氨基乙醚)-N,N,N′,N′-四乙酸, BioXtra, ≥97 .0%