跳转至内容
Merck
CN
  • Vascular smooth muscle cell differentiation to an osteogenic phenotype involves matrix metalloproteinase-2 modulation by homocysteine.

Vascular smooth muscle cell differentiation to an osteogenic phenotype involves matrix metalloproteinase-2 modulation by homocysteine.

Molecular and cellular biochemistry (2015-05-20)
Tingjiao Liu, Jinghan Lin, Ting Ju, Lei Chu, Liming Zhang
摘要

Arterial calcification is common in vascular diseases and involves conversion of vascular smooth muscle cells (VSMCs) to an osteoblast phenotype. Clinical studies suggest that the development of atherosclerosis can be promoted by homocysteine (HCY), but the mechanisms remain unclear. Here, we determined whether increases in HCY levels lead to an increase in VSMC calcification and differentiation, and examined the role of an extracellular matrix remodeler, matrix metalloproteinase-2 (MMP-2). Rat VSMCs were exposed to calcification medium in the absence or presence of HCY (10, 100 or 200 μmol/L) or an MMP-2 inhibitor (10(-6) or 10(-5) mol/L). MTT assays were performed to determine the cytotoxicity of the MMP-2 inhibitor in calcification medium containing 200 μmol/L HCY. Calcification was assessed by measurements of calcium deposition and alkaline phosphatase (ALP) activity as well as von Kossa staining. Expression of osteocalcin, bone morphogenetic protein (BMP)-2, and osteopontin, and MMP-2 was determined by immunoblotting. Calcification medium induced osteogenic differentiation of VSMCs. HCY promoted calcification, increased osteocalcin and BMP-2 expression, and decreased expression of osteopontin. MMP-2 expression was increased by HCY in a dose-dependent manner in VSMCs exposed to both control and calcification medium. The MMP-2 inhibitor decreased the calcium content and ALP activity, and attenuated the osteoblastic phenotype of VSMCs. Vascular calcification and osteogenic differentiation of VSMCs were positively regulated by HCY through increased/restored MMP-2 expression, increased expression of calcification proteins, and decreased anti-calcification protein levels. In summary, MMP-2 inhibition may be a protective strategy against VSMC calcification.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
二甲基亚砜, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
二甲基亚砜, Molecular Biology
Sigma-Aldrich
二甲基亚砜, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
二甲基亚砜, anhydrous, ≥99.9%
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
二甲基亚砜, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
噻唑蓝, 98%
Sigma-Aldrich
氯化钙 溶液, BioUltra, Molecular Biology, ~1 M in H2O
Sigma-Aldrich
噻唑蓝, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥97.5% (HPLC)
Sigma-Aldrich
氯化钙, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Sigma-Aldrich
二甲基亚砜, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
二甲基亚砜, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
L - (−) -葡萄糖, ≥99%
Sigma-Aldrich
氯化钙, powder, 99.99% trace metals basis
Sigma-Aldrich
二甲基亚砜, PCR Reagent
Sigma-Aldrich
氯化钙
Sigma-Aldrich
氯化钙, AnhydroBeads, −10 mesh, ≥99.9% trace metals basis
Sigma-Aldrich
氯化钙, AnhydroBeads, −10 mesh, ≥99.99% trace metals basis
Sigma-Aldrich
二甲基亚砜, Vetec, reagent grade, 99%
Sigma-Aldrich
氯化钙, Vetec, reagent grade, 96%