跳转至内容
Merck
CN
  • Single-cell gene expression analysis reveals regulators of distinct cell subpopulations among developing human neurons.

Single-cell gene expression analysis reveals regulators of distinct cell subpopulations among developing human neurons.

Genome research (2017-10-17)
Jiaxu Wang, Piroon Jenjaroenpun, Akshay Bhinge, Vladimir Espinosa Angarica, Antonio Del Sol, Intawat Nookaew, Vladimir A Kuznetsov, Lawrence W Stanton
摘要

The stochastic dynamics and regulatory mechanisms that govern differentiation of individual human neural precursor cells (NPC) into mature neurons are currently not fully understood. Here, we used single-cell RNA-sequencing (scRNA-seq) of developing neurons to dissect/identify NPC subtypes and critical developmental stages of alternative lineage specifications. This study comprises an unsupervised, high-resolution strategy for identifying cell developmental bifurcations, tracking the stochastic transcript kinetics of the subpopulations, elucidating regulatory networks, and finding key regulators. Our data revealed the bifurcation and developmental tracks of the two NPC subpopulations, and we captured an early (24 h) transition phase that leads to alternative neuronal specifications. The consequent up-regulation and down-regulation of stage- and subpopulation-specific gene groups during the course of maturation revealed biological insights with regard to key regulatory transcription factors and lincRNAs that control cellular programs in the identified neuronal subpopulations.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
层粘连蛋白 来源于 Engelbreth-Holm-Swarm 小鼠肉瘤基底膜, 1-2 mg/mL in Tris-buffered saline, 0.2 μm filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
多聚-L-赖氨酸 溶液, 0.01%, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
腺苷-3′,5′-环单磷酸, ≥98.5% (HPLC), powder