Skip to Content
Merck
CN
  • Neutrophil extracellular traps downregulate lipopolysaccharide-induced activation of monocyte-derived dendritic cells.

Neutrophil extracellular traps downregulate lipopolysaccharide-induced activation of monocyte-derived dendritic cells.

Journal of immunology (Baltimore, Md. : 1950) (2014-10-24)
Lorena Barrientos, Alexandre Bignon, Claire Gueguen, Luc de Chaisemartin, Roseline Gorges, Catherine Sandré, Laurent Mascarell, Karl Balabanian, Saadia Kerdine-Römer, Marc Pallardy, Viviana Marin-Esteban, Sylvie Chollet-Martin
ABSTRACT

Polymorphonuclear neutrophils (PMN) play a central role in inflammation and participate in its control, notably by modulating dendritic cell (DC) functions via soluble mediators or cell-cell contacts. Neutrophil extracellular traps (NETs) released by PMN could play a role in this context. To evaluate NET effects on DC maturation, we developed a model based on monocyte-derived DC (moDC) and calibrated NETs isolated from fresh human PMN. We found that isolated NETs alone had no discernable effect on moDC. In contrast, they downregulated LPS-induced moDC maturation, as shown by decreased surface expression of HLA-DR, CD80, CD83, and CD86, and by downregulated cytokine production (TNF-α, IL-6, IL-12, IL-23), with no increase in the expression of tolerogenic DC genes. Moreover, the presence of NETs during moDC maturation diminished the capacity of these moDC to induce T lymphocyte proliferation in both autologous and allogeneic conditions, and modulated CD4(+) T lymphocyte polarization by promoting the production of Th2 cytokines (IL-5 and IL-13) and reducing that of Th1 and Th17 cytokines (IFN-γ and IL-17). Interestingly, the expression and activities of the lymphoid chemokine receptors CCR7 and CXCR4 on moDC were not altered when moDC matured in the presence of NETs. Together, these findings reveal a new role for NETs in adaptive immune responses, modulating some moDC functions and thereby participating in the control of inflammation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Imiquimod, ≥98% (HPLC), solid
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
Sodium pyruvate, BioXtra, ≥99%
Sigma-Aldrich
Calcium Ionophore A23187, ≥98% (TLC), powder
Sigma-Aldrich
Phorbol 12-myristate 13-acetate, ≥99% (TLC), film or powder
Sigma-Aldrich
Sodium pyruvate, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
Sodium pyruvate, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium pyruvate, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Supelco
Calcium ionophore III, Selectophore, function tested
Sigma-Aldrich
5-Carboxy-fluorescein diacetate N-succinimidyl ester, suitable for fluorescence, ≥95.0% (HPLC)
Sigma-Aldrich
5(6)-Carboxyfluorescein diacetate N-succinimidyl ester, BioReagent, suitable for fluorescence, ≥90% (HPLC)
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
Phorbol 12-myristate 13-acetate, synthetic, ≥98.0% (TLC)
Sigma-Aldrich
Sodium pyruvate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Supelco
HEPES, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
HEPES, Vetec, reagent grade, 99.5%
Sigma-Aldrich
Sodium pyruvate, Vetec, reagent grade, 98%
Sigma-Aldrich
Resiquimod, ≥98% (HPLC)
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
tert-Butyl acetoacetate, reagent grade, 98%
Sigma-Aldrich
Dexamethasone, powder, BioReagent, suitable for cell culture, ≥97%