跳转至内容
Merck
CN
  • Contributive Role of TNF-α to L-DOPA-Induced Dyskinesia in a Unilateral 6-OHDA Lesion Model of Parkinson's Disease.

Contributive Role of TNF-α to L-DOPA-Induced Dyskinesia in a Unilateral 6-OHDA Lesion Model of Parkinson's Disease.

Frontiers in pharmacology (2021-01-30)
Maurício Dos Santos Pereira, Gabriel Henrique Dias Abreu, Jeremy Rocca, Sabah Hamadat, Rita Raisman-Vozari, Patrick Pierre Michel, Elaine Del Bel
摘要

Our present objective was to better characterize the mechanisms that regulate striatal neuroinflammation in mice developing L-DOPA-induced dyskinesia (LID). For that, we used 6-hydroxydopamine (6-OHDA)-lesioned mice rendered dyskinetic by repeated intraperitoneal injections of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) and quantified ensuing neuroinflammatory changes in the dopamine-denervated dorsal striatum. LID development was associated with a prominent astrocytic response, and a more moderate microglial cell reaction restricted to this striatal area. The glial response was associated with elevations in two pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β. Treatment with the phytocannabinoid cannabidiol and the transient receptor potential vanilloid-1 (TRPV-1) channel antagonist capsazepine diminished LID intensity and decreased TNF-α levels without impacting other inflammation markers. To possibly reproduce the neuroinflammatory component of LID, we exposed astrocyte and microglial cells in culture to candidate molecules that might operate as inflammatory cues during LID development, i.e., L-DOPA, dopamine, or glutamate. Neither L-DOPA nor dopamine produced an inflammatory response in glial cell cultures. However, glutamate enhanced TNF-α secretion and GFAP expression in astrocyte cultures and promoted Iba-1 expression in microglial cultures. Of interest, the antidyskinetic treatment with cannabidiol + capsazepine reduced TNF-α release in glutamate-activated astrocytes. TNF-α, on its own, promoted the synaptic release of glutamate in cortical neuronal cultures, whereas cannabidiol + capsazepine prevented this effect. Therefore, we may assume that the release of TNF-α by glutamate-activated astrocytes may contribute to LID by exacerbating corticostriatal glutamatergic inputs excitability and maintaining astrocytes in an activated state through a self-reinforcing mechanism.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
盐酸多巴胺 盐酸盐
Sigma-Aldrich
6-羟基多巴胺 盐酸盐, ≥97% (titration), powder
Sigma-Aldrich
L-谷氨酸 单钠盐 水合物, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
脂多糖 来源于大肠杆菌 026:B6, ≥10,000 EU/mg, purified by phenol extraction
Sigma-Aldrich
肿瘤坏死因子-α 人, TNF-α, recombinant, expressed in E. coli, powder, suitable for cell culture
Sigma-Aldrich
多巴丝肼 盐酸盐, ≥98% (HPLC), solid
Sigma-Aldrich
L -3,4-二羟基苯丙氨酸甲酯 盐酸盐, solid
Sigma-Aldrich
辣椒平, ≥98% (HPLC), solid