跳转至内容
Merck
CN
  • Immobilization of alkaline phosphatase on solid surface through self-assembled monolayer and by active-site protection.

Immobilization of alkaline phosphatase on solid surface through self-assembled monolayer and by active-site protection.

Journal of nanoscience and nanotechnology (2014-04-18)
En-Feng Gao, Kyung Lhi Kang, Jeong Hee Kim
摘要

Retaining biological activity of a protein after immobilization is an important issue and many studies reported to enhance the activity of proteins after immobilization. We recently developed a new immobilization method of enzyme using active-site protection and minimization of the cross-links between enzyme and surface with a DNA polymerase as a model system. In this study, we extended the new method to an enzyme with a small mono-substrate using alkaline phosphatase (AP) as another model system. A condition to apply the new method is that masking agents, in this case its own substrate needs to stay at the active-site of the enzyme to be immobilized in order to protect the active-site during the harsh immobilization process. This could be achieved by removal of essential divalent ion, Zn2+ that is required for full enzyme activity of AP from the masking solution while active-site of AP was protected with p-nitrophenyl phosphate (pNPP). Approximately 40% of the solution-phase activity was acquired with active-site protected immobilized AP. In addition to protection active-site of AP, the number of immobilization links was kinetically controlled. When the mole fraction of the activated carboxyl group of the linker molecule in self-assembled monolayer (SAM) of 12-mercaptododecanoic acid and 6-mercapto-1-ethanol was varied, 10% of 12-mercaptododecanoic acid gave the maximum enzyme activity. Approximately 51% increase in enzyme activity of the active-site protected AP was observed compared to that of the unprotected group. It was shown that the concept of active-site protection and kinetic control of the number of covalent immobilization bonds can be extended to enzymes with small mono-substrates. It opens the possibility of further extension of the new methods of active-site protection and kinetic control of immobilization bond to important enzymes used in research and industrial fields.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
碱性磷酸酶 来源于牛肠粘膜, buffered aqueous solution, ≥2,000 DEA units/mg protein
Sigma-Aldrich
碱性磷酸酶 来源于牛肠粘膜, lyophilized powder, ≥10 DEA units/mg solid
Sigma-Aldrich
碱性磷酸酶 来源于牛肠粘膜, BioUltra, ≥5,700 DEA units/mg protein
Sigma-Aldrich
碱性磷酸酶 来源于大肠杆菌, lyophilized powder, 30-60 units/mg protein (in glycine buffer)
Sigma-Aldrich
碱性磷酸酶 来源于牛肠粘膜, ≥5,500 DEA units/mg protein
Sigma-Aldrich
碱性磷酸酶 来源于大肠杆菌, buffered aqueous glycerol solution, 20-50 units/mg protein (in glycine buffer)
Sigma-Aldrich
碱性磷酸酶 来源于牛肠粘膜, buffered aqueous glycerol solution, ≥4,000 DEA units/mg protein
Sigma-Aldrich
碱性磷酸酶 来源于大肠杆菌, ammonium sulfate suspension, 30-90 units/mg protein (modified Warburg-Christian, in glycine buffer)
Sigma-Aldrich
碱性磷酸酶 来源于猪肾脏, lyophilized powder, ≥100 DEA units/mg protein
Sigma-Aldrich
磷酸酶(碱性) 来源于小牛肠粘膜, suitable for enzyme immunoassay, solution (clear, colorless), ~2500 U/mg protein (~10 mg/ml)
Sigma-Aldrich
磷酸酶,碱性虾, ≥900 DEA units/mL, buffered aqueous glycerol solution, recombinant, expressed in proprietary host
Sigma-Aldrich
磷酸酶(碱性) 牛, recombinant, expressed in Pichia pastoris, ≥4000 units/mg protein