跳转至内容
Merck
CN
  • In vitro dissolution of generic immediate-release solid oral dosage forms containing BCS class I drugs: comparative assessment of metronidazole, zidovudine, and amoxicillin versus relevant comparator pharmaceutical products in South Africa and India.

In vitro dissolution of generic immediate-release solid oral dosage forms containing BCS class I drugs: comparative assessment of metronidazole, zidovudine, and amoxicillin versus relevant comparator pharmaceutical products in South Africa and India.

AAPS PharmSciTech (2014-05-23)
Nallagundla H S Reddy, Srinivas Patnala, Raimar Löbenberg, Isadore Kanfer
摘要

Biowaivers are recommended for immediate-release solid oral dosage forms using dissolution testing as a surrogate for in vivo bioequivalence studies. Several guidance are currently available (the World Health Organization (WHO), the US FDA, and the EMEA) where the conditions are described. In this study, definitions, criteria, and methodologies according to the WHO have been applied. The dissolution performances of immediate-release metronidazole, zidovudine, and amoxicillin products purchased in South African and Indian markets were compared to the relevant comparator pharmaceutical product (CPP)/reference product. The dissolution performances were studied using US Pharmacopeia (USP) apparatus 2 (paddle) set at 75 rpm in each of three dissolution media (pH1.2, 4.5, and 6.8). Concentrations of metronidazole, zidovudine, and amoxicillin in each dissolution media were determined by HPLC. Of the 11 metronidazole products tested, only 8 could be considered as very rapidly dissolving products as defined by the WHO, whereas 2 of those products could be considered as rapidly dissolving products but did not comply with the f 2 acceptance criteria in pH 6.8. All 11 zidovudine products were very rapidly dissolving, whereas in the case of the 14 amoxicillin products tested, none of those products met any of the WHO criteria. This study indicates that not all generic products containing the same biopharmaceutics classification system (BCS) I drug and in similar strength and dosage form are necessarily in vitro equivalent. Hence, there is a need for ongoing market surveillance to determine whether marketed generic products containing BCS I drugs meet the release requirements to confirm their in vitro bioequivalence to the respective reference product.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
甲醇, suitable for HPLC, ≥99.9%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
乙酸, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
氢氧化钠, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
乙酸, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
氢氧化钠, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
甲醇, HPLC Plus, ≥99.9%
Sigma-Aldrich
氢氧化钠 溶液, 50% in H2O
Sigma-Aldrich
乙酸钠, anhydrous, ReagentPlus®, ≥99.0%
Sigma-Aldrich
乙腈, ACS reagent, ≥99.5%
Sigma-Aldrich
乙腈, anhydrous, 99.8%
Sigma-Aldrich
乙酸钠, ACS reagent, ≥99.0%
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
氢氧化钠 溶液, BioUltra, Molecular Biology, 10 M in H2O
Sigma-Aldrich
氢氧化钠 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
乙酸, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
乙腈, ≥99.9% (GC)
Sigma-Aldrich
乙酸, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
氢氧化钠, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
乙酸, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
乙酸 溶液, suitable for HPLC
Sigma-Aldrich
氢氧化钠, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
氢氧化钠, reagent grade, 97%, powder
Sigma-Aldrich
乙酸钠, puriss. p.a., ACS reagent, reag. Ph. Eur., anhydrous