跳转至内容
Merck
CN
  • Targeting oncogenic interleukin-7 receptor signalling with N-acetylcysteine in T cell acute lymphoblastic leukaemia.

Targeting oncogenic interleukin-7 receptor signalling with N-acetylcysteine in T cell acute lymphoblastic leukaemia.

British journal of haematology (2014-09-27)
Marc R Mansour, Casie Reed, Amy R Eisenberg, Jen-Chieh Tseng, Jean-Claude Twizere, Sarah Daakour, Akinori Yoda, Scott J Rodig, Noa Tal, Chen Shochat, Alla Berezovskaya, Daniel J DeAngelo, Stephen E Sallan, David M Weinstock, Shai Izraeli, Andrew L Kung, Alex Kentsis, A Thomas Look
摘要

Activating mutations of the interleukin-7 receptor (IL7R) occur in approximately 10% of patients with T cell acute lymphoblastic leukaemia (T-ALL). Most mutations generate a cysteine at the transmembrane domain leading to receptor homodimerization through disulfide bond formation and ligand-independent activation of STAT5. We hypothesized that the reducing agent N-acetylcysteine (NAC), a well-tolerated drug used widely in clinical practice to treat acetaminophen overdose, would reduce disulfide bond formation, and inhibit mutant IL7R-mediated oncogenic signalling. We found that treatment with NAC disrupted IL7R homodimerization in IL7R-mutant DND-41 cells as assessed by non-reducing Western blot, as well as in a luciferase complementation assay. NAC led to STAT5 dephosphorylation and cell apoptosis at clinically achievable concentrations in DND-41 cells, and Ba/F3 cells transformed by an IL7R-mutant construct containing a cysteine insertion. The apoptotic effects of NAC could be rescued in part by a constitutively active allele of STAT5. Despite using doses lower than those tolerated in humans, NAC treatment significantly inhibited the progression of human DND-41 cells engrafted in immunodeficient mice. Thus, targeting leukaemogenic IL7R homodimerization with NAC offers a potentially effective and feasible therapeutic strategy that warrants testing in patients with T-ALL.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
D -(+)-葡萄糖, ≥99.5% (GC)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
D -(+)-葡萄糖, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
甲醛 溶液, Molecular Biology, 36.5-38% in H2O
Sigma-Aldrich
甲醛 溶液, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
SAFC
甲醛 溶液, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
葡萄糖, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
D -(+)-葡萄糖, ≥99.5% (GC), BioXtra
Supelco
葡萄糖, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
荧光素 5(6)-异硫氰酸酯, BioReagent, suitable for fluorescence, mixture of 2 components, ≥90% (HPLC)
Sigma-Aldrich
荧光素异硫氰酸酯异构体I, suitable for protein labeling, ≥90% (HPLC), powder
Sigma-Aldrich
甲醛 溶液, Molecular Biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
HEPES缓冲溶液, 1 M in H2O
USP
右旋糖, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
D -(+)-葡萄糖, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
D -(+)-葡萄糖, ACS reagent
Supelco
D -(+)-葡萄糖, analytical standard
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
甲醛 溶液, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
D -荧光素, synthetic
Supelco
甲醛 溶液, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
D -(+)-葡萄糖, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
甲醛 溶液, tested according to Ph. Eur.
Sigma-Aldrich
荧光素 5(6)-异硫氰酸酯, ≥90% (HPLC)
Sigma-Aldrich
荧光素异硫氰酸酯异构体I, ≥97.5% (HPLC)
Sigma-Aldrich
D -(+)-葡萄糖, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%