跳转至内容
Merck
CN
  • Synthesis and electrochemical study of a hybrid structure based on PDMS-TEOS and titania nanotubes for biomedical applications.

Synthesis and electrochemical study of a hybrid structure based on PDMS-TEOS and titania nanotubes for biomedical applications.

Nanotechnology (2014-08-21)
António G B Castro, Alexandre C Bastos, Vardan Galstyan, Guido Faglia, Giorgio Sberveglieri, Isabel M Miranda Salvado
摘要

Metallic implants and devices are widely used in the orthopedic and orthodontic clinical areas. However, several problems regarding their adhesion with the living tissues and inflammatory responses due to the release of metallic ions to the medium have been reported. The modification of the metallic surfaces and the use of biocompatible protective coatings are two approaches to solve such issues. In this study, in order to improve the adhesion properties and to increase the corrosion resistance of metallic Ti substrates we have obtained a hybrid structure based on TiO₂ nanotubular arrays and PDMS-TEOS films. TiO₂ nanotubes have been prepared with two different diameters by means of electrochemical anodization. PDMS-TEOS films have been prepared by the sol-gel method. The morphological and the elemental analysis of the structures have been investigated by scanning electron microscopy and energy dispersive spectroscopy (EDS). Electrochemical impedance spectroscopy (EIS) and polarization curves have been performed during immersion of the samples in Kokubo's simulated body fluid (SBF) at 37 °C to study the effect of structure layers and tube diameter on the protective properties. The obtained results show that the modification of the surface structure of TiO₂ and the application of PDMS-TEOS film is a promising strategy for the development of implant materials.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
2-丙醇, suitable for HPLC, 99.9%
Sigma-Aldrich
2-丙醇, ACS reagent, ≥99.5%
Sigma-Aldrich
2-丙醇, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
异丙醇, meets USP testing specifications
Sigma-Aldrich
2-丙醇, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
2-丙醇, anhydrous, 99.5%
Sigma-Aldrich
四异丙醇钛, 97%
Sigma-Aldrich
2-丙醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
2-丙醇, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
异丙醇, ≥99.7%, FCC, FG
Sigma-Aldrich
2-丙醇, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
2-丙醇, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
四异丙醇钛, 99.999% trace metals basis
Supelco
2-丙醇, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
四异丙醇钛, ≥97.0%
Sigma-Aldrich
2-丙醇, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
乙酰乙酸乙酯, ReagentPlus®, 99%
Sigma-Aldrich
2-丙醇, puriss., meets analytical specification of Ph. Eur., BP, USP, ≥99.5% (GC)
Supelco
2-丙醇, analytical standard
Sigma-Aldrich
聚二甲基硅氧烷, viscosity 1.0 cSt (25 °C)
Sigma-Aldrich
2-丙醇, suitable for HPLC, 99.5%
USP
2-丙醇, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
乙酰乙酸乙酯, natural, ≥97%, FG
Sigma-Aldrich
四异丙醇钛, packaged for use in deposition systems
Sigma-Aldrich
乙酰乙酸乙酯, puriss. p.a., ≥99.0% (GC)
Sigma-Aldrich
聚二甲基硅氧烷, viscosity 0.65 cSt (25 °C)
Sigma-Aldrich
乙酰乙酸乙酯, ≥99%, FCC, FG
Sigma-Aldrich
2-丙醇, ACS reagent, ≥99.5%
Sigma-Aldrich
乙酰乙酸乙酯, Arxada quality, ≥99.0% (GC)
Supelco
乙酰乙酸乙酯, analytical standard