Merck
CN
  • Utility of cerebrospinal fluid drug concentration as a surrogate for unbound brain concentration in nonhuman primates.

Utility of cerebrospinal fluid drug concentration as a surrogate for unbound brain concentration in nonhuman primates.

Drug metabolism and pharmacokinetics (2014-05-09)
Yoko Nagaya, Yoshitane Nozaki, Kazumasa Kobayashi, Osamu Takenaka, Yosuke Nakatani, Kazutomi Kusano, Tsutomu Yoshimura, Hiroyuki Kusuhara
摘要

In central nervous system drug discovery, cerebrospinal fluid (CSF) drug concentration (C(CSF)) has been widely used as a surrogate for unbound brain concentrations (C(u,brain)). However, previous rodent studies demonstrated that when drugs undergo active efflux by transporters, such as P-glycoprotein (P-gp), at the blood-brain barrier, the C(CSF) overestimates the corresponding C(u,brain). To investigate the utility of C(CSF) as a surrogate for interstitial fluid (ISF) concentration (C(ISF)) in nonhuman primates, this study simultaneously determined the C(CSF) and C(ISF) of 12 compounds, including P-gp substrates, under steady-state conditions in cynomolgus monkeys using intracerebral microdialysis coupled with cisternal CSF sampling. Unbound plasma concentrations of non- or weak P-gp substrates were within 2.2-fold of the C(ISF) or C(CSF), whereas typical P-gp substrates (risperidone, verapamil, desloratadine, and quinidine) showed ISF-to-plasma unbound (K(p,uu,ISF)) and CSF-to-plasma unbound concentration ratios (K(p,uu,CSF)) that were appreciably lower than unity. Although the K(p,uu,CSF) of quinidine, verapamil, and desloratadine showed a trend of overestimating the K(p,uu,ISF), K(p,uu,CSF) showed a good agreement with K(p,uu,ISF) within 3-fold variations for all compounds examined. C(u,brain) of some basic compounds, as determined using brain homogenates, overestimated the C(ISF) and C(CSF). Therefore, C(CSF) could be used as a surrogate for C(ISF) in nonhuman primates.

材料
货号
品牌
产品描述

Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
HEPES缓冲溶液, 1 M in H2O
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Supelco
氯化钠, reference material for titrimetry, certified by BAM, ≥99.5%
Supelco
氯化钠, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
SAFC
HEPES
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
SAFC
HEPES
Sigma-Aldrich
(±)-维拉帕米 盐酸盐, ≥99% (titration), powder
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
氯化钠 溶液, 0.85%
Sigma-Aldrich
氯化钠, tested according to Ph. Eur.
Supelco
安替比林, analytical standard
Supelco
盐酸昂丹司琼, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Supelco
卡马西平, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
USP
维拉帕米 盐酸盐, United States Pharmacopeia (USP) Reference Standard
Supelco
(±)-维拉帕米 盐酸盐, Pharmaceutical Secondary Standard; Certified Reference Material