跳转至内容
Merck
CN
  • Addition of sialidase or p38 MAPK inhibitors does not ameliorate decrements in platelet in vitro storage properties caused by 4 °C storage.

Addition of sialidase or p38 MAPK inhibitors does not ameliorate decrements in platelet in vitro storage properties caused by 4 °C storage.

Vox sanguinis (2014-07-01)
A Skripchenko, D Thompson-Montgomery, H Awatefe, A Turgeon, S J Wagner
摘要

Bacterial proliferation is inhibited in platelets (PLTs) stored at refrigerated temperatures, but also dramatically decreases PLT in vivo survival. Recent studies have demonstrated that cold temperature (CT) stored PLTs secrete sialidases upon re-warming, removing sialic acid from the PLT surface, which may be responsible for clustering of GPIbα and PLT clearance from circulation. In this study, the influence of a sialidase inhibitor or a p38 MAP kinase inhibitor was evaluated in units stored at 4 °C. After collection of a single Trima apheresis unit (n = 12), PLTs were aliquoted into four 60-ml CLX storage bags. One bag was stored at 20-24 °C (RT) with continuous agitation; a second bag was stored at 4 °C without agitation; a third bag was held at 4 °C without agitation with sialidase inhibitor, a fourth bag was incubated at 4 °C with a p38 MAPK inhibitor without agitation. Beginning from Day 1, all in vitro PLT parameters were adversely affected by CT compared to those of RT. Similar in vitro storage properties were observed in CT PLT in the presence or absence of sialidase or p38 MAPK inhibitors. P38 MAPK phosphorylation inhibition was not observed at CT. Decrease of sialidase activity was observed for 2 days in PLTs stored in additive solution but not in plasma. Addition of either sialidase or p38 MAPK inhibitors do not improve any in vitro parameters of PLTs stored at 4 °C in 100% plasma.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
二甲基亚砜, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
二甲基亚砜, ACS reagent, ≥99.9%
Sigma-Aldrich
二甲基亚砜, Molecular Biology
Sigma-Aldrich
二甲基亚砜, suitable for HPLC, ≥99.7%
Sigma-Aldrich
二甲基亚砜, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
二甲基亚砜, ReagentPlus®, ≥99.5%
Sigma-Aldrich
二甲基亚砜, anhydrous, ≥99.9%
Sigma-Aldrich
二甲基亚砜, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
二甲基亚砜, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
二甲基亚砜, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
荧光素 5(6)-异硫氰酸酯, BioReagent, suitable for fluorescence, mixture of 2 components, ≥90% (HPLC)
Sigma-Aldrich
荧光素异硫氰酸酯异构体I, suitable for protein labeling, ≥90% (HPLC), powder
Sigma-Aldrich
二甲基亚砜, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
二甲基亚砜, PCR Reagent
Sigma-Aldrich
二甲基亚砜, puriss. p.a., dried, ≤0.02% water
Sigma-Aldrich
荧光素 5(6)-异硫氰酸酯, ≥90% (HPLC)
Sigma-Aldrich
荧光素异硫氰酸酯异构体I, ≥97.5% (HPLC)
Supelco
二甲基亚砜, analytical standard
Supelco
二甲基亚砜, for inorganic trace analysis, ≥99.99995% (metals basis)
USP
二甲基亚砜, United States Pharmacopeia (USP) Reference Standard
二甲基亚砜, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
二甲基亚砜, Vetec, reagent grade, 99%