跳转至内容
Merck
CN
  • Global gene expression in granulosa cells of growing, plateau and atretic dominant follicles in cattle.

Global gene expression in granulosa cells of growing, plateau and atretic dominant follicles in cattle.

Reproductive biology and endocrinology : RB&E (2015-04-17)
Annie Girard, Isabelle Dufort, Gabriel Douville, Marc-André Sirard
摘要

The physiological state of the dominant follicle is important as it may be linked to the competence of the oocyte within. The objective of this study was to analyze, by transcriptomic analysis, the changes occurring in granulosa cells from dominant follicles at different phases of follicular growth. Granulosa cells were collected from slaughterhouse dairy cattle follicles with a diameter greater than 9 mm, and were classified at different phases of follicle growth based on flow cytometry profiles of DNA content after staining with propidium iodide. Three phases were identified based on the proportion of cells in -G1 (less than 2n DNA), G0-G1 (2n DNA) or S-M (more than 2n DNA) and follicles were thus allocated to the growing, plateau or atresia group. Between group analysis (BGA) showed clear segregation of the three groups, and the groups were contrasted against each other in a loop design to identify differently expressed genes. Ingenuity Pathway Analysis (IPA) was used to identify the functions and upstream regulators associated with the observed differently expressed genes. Major differences were observed between the growth phases. Granulosa cells from follicles in the plateau phase had increased expression of TYRO3 and downregulation of JAM2 compared to growing follicles, supporting the idea of a shift from proliferation to differentiation. On the other hand, genes regulating the response to oxidative stress (VNN1) and angiogenesis (ANGPT2) were upregulated in granulosa cells from atretic follicles. While the predicted activated functions in cells at the plateau stage compared to cells at the growing stage included synthesis and transport of molecules, the predictions for atretic follicles relative to plateau ones included an increase in apoptosis and cell death. Consistent with previous studies, these observations allowed us to match the presence of specific gene transcripts to a particular physiological status and consequently to classify follicles. The results also demonstrated that the plateau phase is not a simple 'in between' status between growth and atresia, as several characteristics are unique to this stage.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
2-丙醇, suitable for HPLC, 99.9%
Sigma-Aldrich
2-丙醇, ACS reagent, ≥99.5%
Sigma-Aldrich
D -(+)-葡萄糖, ≥99.5% (GC)
Sigma-Aldrich
2-丙醇, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
D -(+)-葡萄糖, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
异丙醇, meets USP testing specifications
Sigma-Aldrich
2-丙醇, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
2-丙醇, anhydrous, 99.5%
Sigma-Aldrich
2-丙醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
葡萄糖, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
2-丙醇, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
D -(+)-葡萄糖, ≥99.5% (GC), BioXtra
Supelco
葡萄糖, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
异丙醇, ≥99.7%, FCC, FG
Sigma-Aldrich
2-丙醇, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
2-丙醇, BioUltra, Molecular Biology, ≥99.5% (GC)
USP
右旋糖, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
D -(+)-葡萄糖, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
D -(+)-葡萄糖, ACS reagent
Supelco
D -(+)-葡萄糖, analytical standard
Supelco
2-丙醇, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
2-丙醇, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
2-丙醇, puriss., meets analytical specification of Ph. Eur., BP, USP, ≥99.5% (GC)
Supelco
2-丙醇, analytical standard
Sigma-Aldrich
2-丙醇, suitable for HPLC, 99.5%
Sigma-Aldrich
D -(+)-葡萄糖, suitable for mouse embryo cell culture, ≥99.5% (GC)
USP
2-丙醇, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
D -(+)-葡萄糖, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D -(+)-葡萄糖, tested according to Ph. Eur.