Merck
CN

Impaired degradation of WNK by Akt and PKA phosphorylation of KLHL3.

Biochemical and biophysical research communications (2015-10-06)
Yuki Yoshizaki, Yutaro Mori, Yoshihito Tsuzaki, Takayasu Mori, Naohiro Nomura, Mai Wakabayashi, Daiei Takahashi, Moko Zeniya, Eriko Kikuchi, Yuya Araki, Fumiaki Ando, Kiyoshi Isobe, Hidenori Nishida, Akihito Ohta, Koichiro Susa, Yuichi Inoue, Motoko Chiga, Tatemitsu Rai, Sei Sasaki, Shinichi Uchida, Eisei Sohara
摘要

Mutations in with-no-lysine kinase (WNK) 1, WNK4, Kelch-like 3 (KLHL3), and Cullin3 result in an inherited hypertensive disease, pseudohypoaldosteronism type II. WNK activates the Na-Cl cotransporter (NCC), increasing sodium reabsorption in the kidney. Further, KLHL3, an adapter protein of Cullin3-based E3 ubiquitin ligase, has been recently found to bind to WNK, thereby degrading them. Insulin and vasopressin have been identified as powerful activators of WNK signaling. In this study, we investigated effects of Akt and PKA, key downstream substrates of insulin and vasopressin signaling, respectively, on KLHL3. Mass spectrometry analysis revealed that KLHL3 phosphorylation at S433. Phospho-specific antibody demonstrated defective binding between phosphorylated KLHL3 and WNK4. Consistent with the fact that S433 is a component of Akt and PKA phosphorylation motifs, in vitro kinase assay demonstrated that Akt and PKA can phosphorylate KLHL3 at S433, that was previously reported to be phosphorylated by PKC. Further, forskolin, a representative PKA stimulator, increased phosphorylation of KLHL3 at S433 and WNK4 protein expression in HEK293 cells by inhibiting the KLHL3 effect that leads to WNK4 degradation. Insulin also increased phosphorylation of KLHL3 at S433 in cultured cells. In conclusion, we found that Akt and PKA phosphorylated KLHL3 at S433, and phosphorylation of KLHL3 by PKA inhibited WNK4 degradation. This could be a novel mechanism on how insulin and vasopressin physiologically activate the WNK signal.

材料
货号
品牌
产品描述

Sigma-Aldrich
毛喉素, from Coleus forskohlii, ≥98% (HPLC), powder
Sigma-Aldrich
氟化钠, ACS reagent, ≥99%
Sigma-Aldrich
毛喉素, For use in molecular biology applications
Sigma-Aldrich
正钒酸钠, ≥90% (titration)
Sigma-Aldrich
正钒酸钠, 99.98% trace metals basis
Sigma-Aldrich
氟化钠, BioXtra, ≥99%
Sigma-Aldrich
氟化钠, 99.99% trace metals basis
Sigma-Aldrich
氟化钠, ReagentPlus®, ≥99%
Sigma-Aldrich
氟化钠, BioReagent, suitable for insect cell culture, ≥99%
Sigma-Aldrich
氟化钠, puriss., 98.5-100.5% (calc. to the dried substance), meets analytical specification of Ph. Eur., BP, USP