Merck
CN
  • TraeALDH7B1-5A, encoding aldehyde dehydrogenase 7 in wheat, confers improved drought tolerance in Arabidopsis.

TraeALDH7B1-5A, encoding aldehyde dehydrogenase 7 in wheat, confers improved drought tolerance in Arabidopsis.

Planta (2015-04-22)
Jiamin Chen, Bo Wei, Guoliang Li, Renchun Fan, Yongda Zhong, Xianping Wang, Xiangqi Zhang
摘要

TraeALDH7B1 - 5A , encoding aldehyde dehydrogenase 7 in wheat, conferred significant drought tolerance to Arabidopsis , supported by molecular biological and physiological experiments. Drought stress significantly affects wheat yields. Aldehyde dehydrogenase (ALDH) is a family of enzymes catalyzing the irreversible conversion of aldehydes into acids to decrease the damage caused by abiotic stresses. However, no wheat ALDH member has been functionally characterized to date. Here, we obtained a differentially expressed EST encoding ALDH7 from a cDNA-AFLP library of wheat that was treated with polyethylene glycol 6000. The three full-length homologs of TraeALDH7B1 were isolated by searching the NCBI database and by homolog-based cloning method. Using nulli-tetrasomic lines we located them on wheat chromosomes 5A, 5B and 5D, and named them as TraeALDH7B1-5A, -5B and -5D, respectively. Gene expression profiles indicated that the expressions of all three genes were induced in roots, leaves, culms and spikelets under drought and salt stresses. Enzymatic activity analysis showed that TraeALDH7B1-5A had acetaldehyde dehydrogenase activity. For further functional analysis, we developed transgenic Arabidopsis lines overexpressing TraeALDH7B1-5A driven by the cauliflower mosaic virus 35S promoter. Compared with wild type Arabidopsis, 35S::TraeALDH7B1-5A plants significantly enhanced the tolerance to drought stress, which was demonstrated by up-regulation of stress responsive genes and physiological evidence of primary root length, maintenance of water retention and contents of chlorophyll and MDA. The combined results indicated that TraeALDH7B1-5A is an important drought responsive gene for genetic transformation to improve drought tolerance in crops.

材料
货号
品牌
产品描述

Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
咪唑, ACS reagent, ≥99% (titration)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
乙醛, ACS reagent, ≥99.5%
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
咪唑, ReagentPlus®, 99%
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸 水合物, ≥96.5% (HPLC), ≥96.5% (spectrophotometric assay), from yeast
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
咪唑, for molecular biology, ≥99% (titration)
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
咪唑, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸 水合物, ≥99%
Sigma-Aldrich
乙醛, natural, FG
Sigma-Aldrich
咪唑水溶液, BioUltra, 1 M in H2O
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
咪唑, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸 水合物, Grade AA-1
Sigma-Aldrich
氯化钠 溶液, 0.85%
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸 水合物, ≥95% (HPLC)
Sigma-Aldrich
咪唑, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸 水合物, ≥98%, BioUltra, from yeast
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸, pkg of 10 mg (per vial)
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸 水合物, purified by column chromatography, ≥99%
Sigma-Aldrich
乙醛 溶液, 50 wt. % in ethanol