跳转至内容
Merck
CN
  • Lupanine Improves Glucose Homeostasis by Influencing KATP Channels and Insulin Gene Expression.

Lupanine Improves Glucose Homeostasis by Influencing KATP Channels and Insulin Gene Expression.

Molecules (Basel, Switzerland) (2015-10-23)
Mats Wiedemann, Carmen M Gurrola-Díaz, Belinda Vargas-Guerrero, Michael Wink, Pedro M García-López, Martina Düfer
摘要

The glucose-lowering effects of lupin seeds involve the combined action of several components. The present study investigates the influence of one of the main quinolizidine alkaloids, lupanine, on pancreatic beta cells and in an animal model of type-2 diabetes mellitus. In vitro studies were performed with insulin-secreting INS-1E cells or islets of C57BL/6 mice. In the in vivo experiments, hyperglycemia was induced in rats by injecting streptozotocin (65 mg/kg body weight). In the presence of 15 mmol/L glucose, insulin secretion was significantly elevated by 0.5 mmol/L lupanine, whereas the alkaloid did not stimulate insulin release with lower glucose concentrations. In islets treated with l-arginine, the potentiating effect of lupanine already occurred at 8 mmol/L glucose. Lupanine increased the expression of the Ins-1 gene. The potentiating effect on secretion was correlated to membrane depolarization and an increase in the frequency of Ca(2+) action potentials. Determination of the current through ATP-dependent K⁺ channels (KATP channels) revealed that lupanine directly inhibited the channel. The effect was dose-dependent but, even with a high lupanine concentration of 1 mmol/L or after a prolonged exposure time (12 h), the KATP channel block was incomplete. Oral administration of lupanine did not induce hypoglycemia. By contrast, lupanine improved glycemic control in response to an oral glucose tolerance test in streptozotocin-diabetic rats. In summary, lupanine acts as a positive modulator of insulin release obviously without a risk for hypoglycemic episodes.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
氢氧化钾, ACS reagent, ≥85%, pellets
Sigma-Aldrich
氢氧化钾, reagent grade, 90%, flakes
Sigma-Aldrich
链脲菌素, ≥75% α-anomer basis, ≥98% (HPLC), powder
Sigma-Aldrich
氯化钠, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氢氧化钾 溶液, 45 wt. % in H2O
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氢氧化钾, semiconductor grade, pellets, 99.99% trace metals basis (Purity excludes sodium content.)
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氢氧化钾, ≥85% KOH basis, pellets, white
Supelco
氢氧化钾 溶液, volumetric, 8.0 M KOH (8.0N)
Sigma-Aldrich
氯化钠 溶液, 5 M
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
氢氧化钾, BioXtra, ≥85% KOH basis
Sigma-Aldrich
氯化钠, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氢氧化钾, technical, ≥85%, powder
Sigma-Aldrich
氯化钠 溶液, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
氢氧化钾, ≥99.95% trace metals basis
Sigma-Aldrich
氢氧化钾, pellets, reag. Ph. Eur., ≥85%
Sigma-Aldrich
氢氧化钾, puriss., meets analytical specification of Ph. Eur., BP, 85-100.5%, pellets
Sigma-Aldrich
氯化钠 溶液, 0.85%
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
氢氧化钾, puriss. p.a., ≥86% (T), pellets
Sigma-Aldrich
氯化钠, tablet
Sigma-Aldrich
氯化钠-35Cl, 99 atom % 35Cl
Sigma-Aldrich
氯化钠, random crystals, 99.9% trace metals basis
Sigma-Aldrich
氯化钠, AnhydroBeads, −10 mesh, 99.999% trace metals basis