Merck
CN
  • HAMP Domain Rotation and Tilting Movements Associated with Signal Transduction in the PhoQ Sensor Kinase.

HAMP Domain Rotation and Tilting Movements Associated with Signal Transduction in the PhoQ Sensor Kinase.

mBio (2015-05-28)
Susana Matamouros, Kyle R Hager, Samuel I Miller
摘要

HAMP domains are α-helical coiled coils that often transduce signals from extracytoplasmic sensing domains to cytoplasmic domains. Limited structural information has resulted in hypotheses that specific HAMP helix movement changes downstream enzymatic activity. These hypotheses were tested by mutagenesis and cysteine cross-linking analysis of the PhoQ histidine kinase, essential for resistance to antimicrobial peptides in a variety of enteric pathogens. These results support a mechanistic model in which periplasmic signals which induce an activation state generate a rotational movement accompanied by a tilt in α-helix 1 which activates kinase activity. Biochemical data and a high-confidence model of the PhoQ cytoplasmic domain indicate a possible physical interaction of the HAMP domain with the catalytic domain as necessary for kinase repression. These results support a model of PhoQ activation in which changes in the periplasmic domain lead to conformational movements in the HAMP domain helices which disrupt interaction between the HAMP and the catalytic domains, thus promoting increased kinase activity. Most studies on the HAMP domain signaling states have been performed with chemoreceptors or the HAMP domain of Af1503. Full-length structures of the HAMP-containing histidine kinases VicK and CpxA or a hybrid between the HAMP domain of Af1503 and the EnvZ histidine kinase agree with the parallel four-helix bundle structure identified in Af1503 and provide snapshots of structural conformations experienced by HAMP domains. We took advantage of the fact that we can easily regulate the activation state of PhoQ histidine kinase to study its HAMP domain in the context of the full-length protein in living cells and provide biochemical evidence for different conformational states experienced by Salmonella enterica serovar Typhimurium PhoQ HAMP domain upon signaling.

材料
货号
品牌
产品描述

Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
十二烷基硫酸钠, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
十二烷基硫酸钠, ACS reagent, ≥99.0%
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
十二烷基硫酸钠, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
咪唑, ACS reagent, ≥99% (titration)
Sigma-Aldrich
十二烷基硫酸钠, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
咪唑, ReagentPlus®, 99%
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
咪唑, for molecular biology, ≥99% (titration)
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
咪唑, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
十二烷基硫酸钠, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, for molecular biology, 20% in H2O
Sigma-Aldrich
十二烷基硫酸钠, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
十二烷基硫酸钠, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
咪唑水溶液, BioUltra, 1 M in H2O
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
咪唑, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
十二烷基硫酸钠, ≥90% ((Assay))
Supelco
十二烷基硫酸钠, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
氯化钠 溶液, 0.85%
Sigma-Aldrich
咪唑, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%