Merck
CN
  • High-performance liquid chromatography separation of unsaturated organic compounds by a monolithic silica column embedded with silver nanoparticles.

High-performance liquid chromatography separation of unsaturated organic compounds by a monolithic silica column embedded with silver nanoparticles.

Journal of separation science (2015-06-23)
Yang Zhu, Kei Morisato, George Hasegawa, Nirmalya Moitra, Tsutomu Kiyomura, Hiroki Kurata, Kazuyoshi Kanamori, Kazuki Nakanishi
摘要

The optimization of a porous structure to ensure good separation performances is always a significant issue in high-performance liquid chromatography column design. Recently we reported the homogeneous embedment of Ag nanoparticles in periodic mesoporous silica monolith and the application of such Ag nanoparticles embedded silica monolith for the high-performance liquid chromatography separation of polyaromatic hydrocarbons. However, the separation performance remains to be improved and the retention mechanism as compared with the Ag ion high-performance liquid chromatography technique still needs to be clarified. In this research, Ag nanoparticles were introduced into a macro/mesoporous silica monolith with optimized pore parameters for high-performance liquid chromatography separations. Baseline separation of benzene, naphthalene, anthracene, and pyrene was achieved with the theoretical plate number for analyte naphthalene as 36,000 m(-1). Its separation function was further extended to cis/trans isomers of aromatic compounds where cis/trans stilbenes were chosen as a benchmark. Good separation of cis/trans-stilbene with separation factor as 7 and theoretical plate number as 76,000 m(-1) for cis-stilbene was obtained. The trans isomer, however, is retained more strongly, which contradicts the long- established retention rule of Ag ion chromatography. Such behavior of Ag nanoparticles embedded in a silica column can be attributed to the differences in the molecular geometric configuration of cis/trans stilbenes.

材料
货号
品牌
产品描述

Sigma-Aldrich
尿素, ACS reagent, 99.0-100.5%
Sigma-Aldrich
(3-氨基丙基)三乙氧基硅烷, 99%
Sigma-Aldrich
尿素, powder, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
尿素, ReagentPlus®, ≥99.5%, pellets
Supelco
尿素, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
尿素 溶液, BioUltra, ~8 M in H2O
Sigma-Aldrich
尿素, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%, 99.0-101.0% (calc. on dry substance)
Sigma-Aldrich
(3-氨基丙基)三乙氧基硅烷, ≥98%
Sigma-Aldrich
尿素, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
反式-1,2-二苯乙烯, 96%
Sigma-Aldrich
(3-氨基丙基)三乙氧基硅烷, ≥98.0%
Sigma-Aldrich
菲, 98%
Sigma-Aldrich
尿素, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99%
Sigma-Aldrich
尿素, suitable for electrophoresis
Sigma-Aldrich
尿素, BioUltra, for molecular biology, 99% (T)
Sigma-Aldrich
顺-均二苯乙烯, 96%
Sigma-Aldrich
尿素 溶液, 40 % (w/v) in H2O
Sigma-Aldrich
尿素, meets USP testing specifications
Sigma-Aldrich
菲, sublimed grade, ≥99.5%
Sigma-Aldrich
(3-氨基丙基)三乙氧基硅烷, packaged for use in deposition systems, ≥98%
Sigma-Aldrich
尿素-12C, 99.9 atom % 12C
Sigma-Aldrich
尿素, Vetec, reagent grade, 99%