Merck
CN
  • Efficacy of PARP Inhibitor Rucaparib in Orthotopic Glioblastoma Xenografts Is Limited by Ineffective Drug Penetration into the Central Nervous System.

Efficacy of PARP Inhibitor Rucaparib in Orthotopic Glioblastoma Xenografts Is Limited by Ineffective Drug Penetration into the Central Nervous System.

Molecular cancer therapeutics (2015-10-07)
Karen E Parrish, Ling Cen, James Murray, David Calligaris, Sani Kizilbash, Rajendar K Mittapalli, Brett L Carlson, Mark A Schroeder, Julieann Sludden, Alan V Boddy, Nathalie Y R Agar, Nicola J Curtin, William F Elmquist, Jann N Sarkaria
摘要

PARP inhibition can enhance the efficacy of temozolomide and prolong survival in orthotopic glioblastoma (GBM) xenografts. The aim of this study was to evaluate the combination of the PARP inhibitor rucaparib with temozolomide and to correlate pharmacokinetic and pharmacodynamic studies with efficacy in patient-derived GBM xenograft models. The combination of rucaparib with temozolomide was highly effective in vitro in short-term explant cultures derived from GBM12, and, similarly, the combination of rucaparib and temozolomide (dosed for 5 days every 28 days for 3 cycles) significantly prolonged the time to tumor regrowth by 40% in heterotopic xenografts. In contrast, the addition of rucaparib had no impact on the efficacy of temozolomide in GBM12 or GBM39 orthotopic models. Using Madin-Darby canine kidney (MDCK) II cells stably expressing murine BCRP1 or human MDR1, cell accumulation studies demonstrated that rucaparib is transported by both transporters. Consistent with the influence of these efflux pumps on central nervous system drug distribution, Mdr1a/b(-/-)Bcrp1(-/-) knockout mice had a significantly higher brain to plasma ratio for rucaparib (1.61 ± 0.25) than wild-type mice (0.11 ± 0.08). A pharmacokinetic and pharmacodynamic evaluation after a single dose confirmed limited accumulation of rucaparib in the brain is associated with substantial residual PARP enzymatic activity. Similarly, matrix-assisted laser desorption/ionization mass spectrometric imaging demonstrated significantly enhanced accumulation of drug in flank tumor compared with normal brain or orthotopic tumors. Collectively, these results suggest that limited drug delivery into brain tumors may significantly limit the efficacy of rucaparib combined with temozolomide in GBM.

材料
货号
品牌
产品描述

Sigma-Aldrich
乙腈, anhydrous, 99.8%
Sigma-Aldrich
三氟乙酸, ReagentPlus®, 99%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
乙酸乙酯, ACS reagent, ≥99.5%
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
甲酸, reagent grade, ≥95%
Sigma-Aldrich
乙酸乙酯, anhydrous, 99.8%
Sigma-Aldrich
甲酸, ACS reagent, ≥96%
Sigma-Aldrich
乙腈, ACS reagent, ≥99.5%
Sigma-Aldrich
三氟乙酸, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
甲酸铵, reagent grade, 97%
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
甲酸铵, ≥99.995% trace metals basis
Sigma-Aldrich
三氟乙酸, ≥99%, for protein sequencing
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
甲酸铵 溶液, BioUltra, 10 M in H2O
Sigma-Aldrich
乙酸乙酯, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99.5% (GC)
Sigma-Aldrich
2,5-二羟基苯甲酸, 98%
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
乙酸乙酯, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Supelco
2,5-二羟基苯甲酸, matrix substance for MALDI-MS, >99.0% (HPLC)
Sigma-Aldrich
甲醇, BioReagent, ≥99.93%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
甲醇, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
甲酸, ≥95%, FCC, FG
Sigma-Aldrich
乙酸乙酯, ≥99%, FCC, FG
Sigma-Aldrich
乙腈, biotech. grade, ≥99.93%
Sigma-Aldrich
乙酸乙酯, natural, ≥99%, FCC, FG
Sigma-Aldrich
二喹啉甲酸 二钠盐 水合物, ≥98% (HPLC)
Sigma-Aldrich
乙腈, ReagentPlus®, 99%