Merck
CN
  • Firefly luciferase and RLuc8 exhibit differential sensitivity to oxidative stress in apoptotic cells.

Firefly luciferase and RLuc8 exhibit differential sensitivity to oxidative stress in apoptotic cells.

PloS one (2011-05-24)
Julie Czupryna, Andrew Tsourkas
摘要

Over the past decade, firefly Luciferase (fLuc) has been used in a wide range of biological assays, providing insight into gene regulation, protein-protein interactions, cell proliferation, and cell migration. However, it has also been well established that fLuc activity can be highly sensitive to its surrounding environment. In this study, we found that when various cancer cell lines (HeLa, MCF-7, and 293T) stably expressing fLuc were treated with staurosporine (STS), there was a rapid loss in bioluminescence. In contrast, a stable variant of Renilla luciferase (RLuc), RLuc8, exhibited significantly prolonged functionality under the same conditions. To identify the specific underlying mechanism(s) responsible for the disparate sensitivity of RLuc8 and fLuc to cellular stress, we conducted a series of inhibition studies that targeted known intracellular protein degradation/modification pathways associated with cell death. Interestingly, these studies suggested that reactive oxygen species, particularly hydrogen peroxide (H(2)O(2)), was responsible for the diminution of fLuc activity. Consistent with these findings, the direct application of H(2)O(2) to HeLa cells also led to a reduction in fLuc bioluminescence, while H(2)O(2) scavengers stabilized fLuc activity. Comparatively, RLuc8 was far less sensitive to ROS. These observations suggest that fLuc activity can be substantially altered in studies where ROS levels become elevated and can potentially lead to ambiguous or misleading findings.

材料
货号
品牌
产品描述

Sigma-Aldrich
D -甘露醇, ≥98% (GC)
Supelco
甘露醇, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
D -甘露醇, ACS reagent
Sigma-Aldrich
D -甘露醇, BioXtra, ≥98% (HPLC)
Sigma-Aldrich
D -甘露醇, ≥98% (GC), suitable for plant cell culture
Sigma-Aldrich
D -甘露醇, meets EP, FCC, USP testing specifications
Sigma-Aldrich
Z-VAD-FMK, solid
Millipore
D -甘露醇, ACS reagent, suitable for microbiology, ≥99.0%
Sigma-Aldrich
D -甘露醇, BioUltra, ≥99.0% (sum of enantiomers, HPLC)
Sigma-Aldrich
乳酸胱氨酸, ≥90% (HPLC)
Sigma-Aldrich
D -甘露醇, tested according to Ph. Eur.
Supelco
D -甘露醇, ≥99.9999% (metals basis), for boron determination