跳转至内容
Merck
CN
  • Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle.

Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle.

Proceedings of the National Academy of Sciences of the United States of America (2014-04-08)
Anant B Patel, James C K Lai, Golam M I Chowdhury, Fahmeed Hyder, Douglas L Rothman, Robert G Shulman, Kevin L Behar
摘要

Previous (13)C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree with the stoichiometry of a hypothetical astrocyte-to-neuron lactate shuttle model, which predicted negligible functional neuronal uptake of glucose. To test this model, we measured the uptake and phosphorylation of glucose in nerve terminals isolated from rats infused with the glucose analog, 2-fluoro-2-deoxy-D-glucose (FDG) in vivo. The concentrations of phosphorylated FDG (FDG6P), normalized with respect to known neuronal metabolites, were compared in nerve terminals, homogenate, and cortex of anesthetized rats with and without bicuculline-induced seizures. The increase in FDG6P in nerve terminals agreed well with the increase in cortical neuronal glucose oxidation measured previously under the same conditions in vivo, indicating that direct uptake and oxidation of glucose in nerve terminals is substantial under resting and activated conditions. These results suggest that neuronal glucose-derived pyruvate is the major oxidative fuel for activated neurons, not lactate-derived from astrocytes, contradicting predictions of the original astrocyte-to-neuron lactate shuttle model under the range of study conditions.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
D -(+)-葡萄糖, ≥99.5% (GC)
Sigma-Aldrich
D -(+)-葡萄糖, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
D -(+)-葡萄糖 溶液, 45% in H2O, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
葡萄糖, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
D -(+)-葡萄糖 溶液, 100 g/L in H2O, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
D -(+)-葡萄糖, ≥99.5% (GC), BioXtra
Supelco
葡萄糖, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
乳酸, meets USP testing specifications
USP
右旋糖, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
乳酸, 88%, FCC
Sigma-Aldrich
D -(+)-葡萄糖, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
D -(+)-葡萄糖, ACS reagent
Supelco
D -(+)-葡萄糖, analytical standard
Sigma-Aldrich
乳酸, natural, ≥85%
Sigma-Aldrich
乳酸 溶液, ACS reagent, ≥85%
Sigma-Aldrich
L - (−) -葡萄糖, ≥99%
Sigma-Aldrich
DL-乳酸, ~90% (T)
Supelco
乳酸, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
D -(+)-葡萄糖, suitable for mouse embryo cell culture, ≥99.5% (GC)
USP
乳酸, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
DL-乳酸, 85 % (w/w), syrup
Sigma-Aldrich
D -(+)-葡萄糖, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D -(+)-葡萄糖, tested according to Ph. Eur.
Sigma-Aldrich
D-葡萄糖-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Supelco
D -(+)-葡萄糖 溶液, 1 mg/mL in 0.1% benzoic acid, standard for enzymatic assay kits GAGO20, GAHK20, STA20, analytical standard
Sigma-Aldrich
D -(+)-葡萄糖, Vetec, reagent grade, ≥99.5% (HPLC)