跳转至内容
Merck
CN
  • Component reductions in oxygen delivery generate variable haemodynamic and stress hormone responses.

Component reductions in oxygen delivery generate variable haemodynamic and stress hormone responses.

British journal of anaesthesia (2014-05-24)
A Dyson, N Ekbal, M Stotz, S Barnes, J Carré, S Tully, S Henderson, L Barrett, M Singer
摘要

In clinical practice, global oxygen delivery (DO2) is often considered as a whole; however pathological and adaptive responses after a decrease in individual constituents of the DO2 equation (cardiac output, haemoglobin, oxyhaemoglobin saturation) are likely to be diverse. We hypothesized that an equivalent decrease in DO2 after reductions in each separate component of the equation would result in different haemodynamic, tissue oxygenation, and stress hormonal responses. Anaesthetized, fluid-resuscitated male Wistar rats were subjected to circulatory, anaemic, or hypoxic hypoxia (by haemorrhage, isovolaemic haemodilution, and breathing a hypoxic gas mix, respectively), produced either rapidly over 5 min or graded over 30 min, to a targeted 50% decrease in global oxygen delivery. Sham-operated animals acted as controls. Measurements were made of haemodynamics, skeletal muscle tissue oxygen tension, blood gas analysis, and circulating stress hormone levels. Whereas haemorrhage generated the largest decrease in cardiac output, and the greatest stress hormone response, haemodilution had the most marked effect on arterial pressure. In contrast, rapid hypoxaemia produced a minor impact on global haemodynamics yet induced the greatest decrease in regional oxygenation. A greater degree of hyperlactataemia was observed with graded insults compared with those administered rapidly. Decreasing global oxygen delivery, achieved by targeted reductions in its separate components, induces varying circulatory, tissue oxygen tension, and stress hormone responses. We conclude that not all oxygen delivery is the same; this disparity should be emphasized in classical teaching and re-evaluated in patient management.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
氧化氘, 99.9 atom % D
Sigma-Aldrich
氯化钠, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氧化氘, 99.9 atom % D, contains 0.05 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Sigma-Aldrich
氯化钠 溶液, 5 M
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
氯化钠, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠 溶液, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Supelco
氯化钠, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
氧化氘, 99.9 atom % D, contains 0.75 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Supelco
氯化钠, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
氧化氘, filtered, 99.8 atom % D
Sigma-Aldrich
氧化氘, 99.8 atom % D
Sigma-Aldrich
氯化钠 溶液, 0.85%
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
氧化氘, 99.9 atom % D, contains 1 % (w/w) 3-(trimethylsilyl)-1-propanesulfonic acid, sodium salt (DSS)
Sigma-Aldrich
氯化钠, tested according to Ph. Eur.
Sigma-Aldrich
氯化钠, tablet
Sigma-Aldrich
氯化钠-35Cl, 99 atom % 35Cl
Sigma-Aldrich
氧化氘, 70 atom % D
Sigma-Aldrich
氯化钠, random crystals, 99.9% trace metals basis
Sigma-Aldrich
氯化钠, AnhydroBeads, −10 mesh, 99.999% trace metals basis
异氟醚, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
氧化氘, 60 atom % D
Sigma-Aldrich
氯化钠, Vetec, reagent grade, 99%