跳转至内容
Merck
CN
  • Surface engineering of porous silicon microparticles for intravitreal sustained delivery of rapamycin.

Surface engineering of porous silicon microparticles for intravitreal sustained delivery of rapamycin.

Investigative ophthalmology & visual science (2015-01-24)
Alejandra Nieto, Huiyuan Hou, Sang Woong Moon, Michael J Sailor, William R Freeman, Lingyun Cheng
摘要

To understand the relationship between rapamycin loading/release and surface chemistries of porous silicon (pSi) to optimize pSi-based intravitreal delivery system. Three types of surface chemical modifications were studied: (1) pSi-COOH, containing 10-carbon aliphatic chains with terminal carboxyl groups grafted via hydrosilylation of undecylenic acid; (2) pSi-C12, containing 12-carbon aliphatic chains grafted via hydrosilylation of 1-dodecene; and (3) pSiO2-C8, prepared by mild oxidation of the pSi particles followed by grafting of 8-hydrocarbon chains to the resulting porous silica surface via a silanization. The efficiency of rapamycin loading follows the order (micrograms of drug/milligrams of carrier): pSiO2-C8 (105 ± 18) > pSi-COOH (68 ± 8) > pSi-C12 (36 ± 6). Powder X-ray diffraction data showed that loaded rapamycin was amorphous and dynamic drug-release study showed that the availability of the free drug was increased by 6-fold (compared with crystalline rapamycin) by using pSiO2-C8 formulation (P = 0.0039). Of the three formulations in this study, pSiO2-C8-RAP showed optimal performance in terms of simultaneous release of the active drug and carrier degradation, and drug-loading capacity. Released rapamycin was confirmed with the fingerprints of the mass spectrometry and biologically functional as the control of commercial crystalline rapamycin. Single intravitreal injections of 2.9 ± 0.37 mg pSiO2-C8-RAP into rabbit eyes resulted in more than 8 weeks of residence in the vitreous while maintaining clear optical media and normal histology of the retina in comparison to the controls. Porous silicon-based rapamycin delivery system using the pSiO2-C8 formulation demonstrated good ocular compatibility and may provide sustained drug release for retina.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
甲醇, suitable for HPLC, ≥99.9%
Sigma-Aldrich
乙醇,Pure 200纯度, Molecular Biology
Sigma-Aldrich
二甲基亚砜, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
丙酮, ACS reagent, ≥99.5%
Sigma-Aldrich
二甲基亚砜, ACS reagent, ≥99.9%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
二甲基亚砜, Molecular Biology
Sigma-Aldrich
二甲基亚砜, suitable for HPLC, ≥99.7%
Sigma-Aldrich
纯乙醇, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
N,N-二甲基甲酰胺, ACS reagent, ≥99.8%
Sigma-Aldrich
丙酮, suitable for HPLC, ≥99.9%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
二甲基亚砜, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
N,N-二甲基甲酰胺, suitable for HPLC, ≥99.9%
Sigma-Aldrich
纯乙醇, 200 proof
Sigma-Aldrich
甲苯, ACS reagent, ≥99.5%
Sigma-Aldrich
丙酮, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
甲酸, reagent grade, ≥95%
Sigma-Aldrich
二甲基亚砜, ReagentPlus®, ≥99.5%
Sigma-Aldrich
N,N-二甲基甲酰胺, anhydrous, 99.8%
Sigma-Aldrich
二甲基亚砜, anhydrous, ≥99.9%
Sigma-Aldrich
甲醇, HPLC Plus, ≥99.9%
Sigma-Aldrich
丙酮, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
纯乙醇, 200 proof, meets USP testing specifications
Sigma-Aldrich
甲苯, suitable for HPLC, 99.9%
Sigma-Aldrich
甲苯, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
甲酸, ACS reagent, ≥96%
Sigma-Aldrich
二甲基亚砜, ≥99.5% (GC), suitable for plant cell culture