Merck
CN
  • Conversion of bone marrow mesenchymal stem cells into type II alveolar epithelial cells reduces pulmonary fibrosis by decreasing oxidative stress in rats.

Conversion of bone marrow mesenchymal stem cells into type II alveolar epithelial cells reduces pulmonary fibrosis by decreasing oxidative stress in rats.

Molecular medicine reports (2014-11-21)
Kun Huang, Xiaowen Kang, Xinyan Wang, Shijie Wu, Jinling Xiao, Zhaoguo Li, Xiaomei Wu, Wei Zhang
摘要

Pulmonary fibrosis is an irreversible chronic progressive fibroproliferative lung disease, which usually has a poor prognosis. Previous studies have confirmed that the transplantation of bone marrow mesenchymal stem cells (MSCs) significantly reduces lung damage in a number of animal models. However, the underlying mechanism involved in this process remains to be elucidated. In the present study, a bleomycin (BLM)‑induced female Wister rat model of fibrosis was established. At 0 or 7 days following BLM administration, rats were injected into the tail vein with 5‑bromo‑2‑deoxyuridine‑labeled MSCs extracted from male Wistar rats. The lung tissue of the rats injected with MSCs expressed the sex‑determining region Y gene. The level surfactant protein C (SP‑C), a marker for type II alveolar epithelial cells (AEC II), was higher in the group injected with MSCs at day 0 than that in the group injected at day 7. Furthermore, SP‑C mRNA, but not aquaporin 5 mRNA, a marker for type I alveolar epithelial cells, was expressed in fresh bone marrow aspirates and the fifth generation of cultured MSCs. In addition, superoxide dismutase activity and total antioxidative capability, specific indicators of oxidative stress, were significantly increased in the lung tissue of the MSC‑transplanted rats (P<0.05). In conclusion, to alleviate pulmonary fibrosis, exogenous MSCs may be transplanted into damaged lung tissue where they differentiate into AEC II and exert their effect, at least in part, through blocking oxidative stress.

材料
货号
品牌
产品描述

Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氯仿, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯仿, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
氯仿, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
苯酚, puriss. p.a., ACS reagent, reag. Ph. Eur., 99.0-100.5%
Sigma-Aldrich
苯酚 溶液, Equilibrated with 10 mM Tris HCl, pH 8.0, 1 mM EDTA, BioReagent, for molecular biology
Sigma-Aldrich
氯仿, contains ethanol as stabilizer, ACS reagent, ≥99.8%
SAFC
氯化钠 溶液, 5 M
Supelco
氯化钠, reference material for titrimetry, certified by BAM, ≥99.5%
Supelco
氯化钠, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
苯酚, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
液状苯酚, ≥89.0%
Sigma-Aldrich
荧光素 5(6)-异硫氰酸酯, BioReagent, suitable for fluorescence, mixture of 2 components, ≥90% (HPLC)
Sigma-Aldrich
苏木精, certified by the Biological Stain Commission
Sigma-Aldrich
苯酚, for molecular biology
Sigma-Aldrich
荧光素异硫氰酸酯异构体I, suitable for protein labeling, ≥90% (HPLC), powder
Sigma-Aldrich
苯酚 溶液, Saturated with 0.1 M citrate buffer, pH 4.3 ± 0.2, BioReagent, for molecular biology
Sigma-Aldrich
氯醛 水合物, crystallized, ≥98.0% (T)
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
氯醛 水合物, ≥99%
Sigma-Aldrich
氯仿, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
苯酚, ≥99%
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)