Merck
CN
  • Polycyclic aromatic hydrocarbons associated with total suspended particles and surface soils in Kunming, China: distribution, possible sources, and cancer risks.

Polycyclic aromatic hydrocarbons associated with total suspended particles and surface soils in Kunming, China: distribution, possible sources, and cancer risks.

Environmental science and pollution research international (2014-11-26)
Xiaoxia Yang, Dong Ren, Wenwen Sun, Xiaoman Li, Bin Huang, Rong Chen, Chan Lin, Xuejun Pan
摘要

The concentrations, distribution, possible sources, and cancer risks of polycyclic aromatic hydrocarbons (PAHs) in total suspended particles (TSPs) and surface soils collected from the same sampling spots were compared in Kunming, China. The total PAH concentrations were 9.35-75.01 ng/m(3) and 101.64-693.30 ng/g dry weight (d.w.), respectively, in TSPs and surface soils. Fluoranthene (FLA), pyrene (PYR), chrysene (CHR), and phenanthrene (PHE) were the abundant compounds in TSP samples, and phenanthrene (PHE), fluorene (FLO), fluoranthene (FLA), benzo[b]fluoranthene (BbF), and benzo[g,h,i]perylene (BghiP) were the abundant compounds in surface soil samples. The spatial distribution of PAHs in TSPs is closely related to the surrounding environment, which varied significantly as a result of variations in source emission and changes in meteorology. However, the spatial distribution of PAHs in surface soils is supposed to correlate with a city's urbanization history, and high levels of PAHs were always observed in industry district, or central or old district of city. Based on the diagnostic ratios and principal component analysis (PCA), vehicle emissions (especially diesel-powered vehicles) and coal and wood combustion were the main sources of PAHs in TSPs, and the combustion of wood and coal, and spills of unburnt petroleum were the main sources of PAHs in the surface soils. The benzo[a]pyrene equivalent concentration (BaPeq) for the TSPs and surface soil samples were 0.16-2.57 ng/m(3) and 11.44-116.03 ng/g d.w., respectively. The incremental lifetime cancer risk (ILCR) exposed to particulate PAHs ranged from 10(-4) to 10(-3) indicating high potential of carcinogenic risk, and the ILCR exposed to soil PAHs was from 10(-7) to 10(-6) indicating virtual safety. These presented results showed that particle-bound PAHs had higher potential carcinogenic ability for human than soil PAHs. And, the values of cancer risk for children were always higher than for adults, which demonstrated that children were sensitive to carcinogenic effects of PAHs.

材料
货号
品牌
产品描述

Sigma-Aldrich
丙酮, ACS reagent, ≥99.5%
Sigma-Aldrich
二氯甲烷, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
二氯甲烷, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
丙酮, suitable for HPLC, ≥99.9%
Sigma-Aldrich
二氯甲烷, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
丙酮, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
二氯甲烷, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer
Sigma-Aldrich
正己烷, suitable for HPLC, ≥97.0% (GC)
Sigma-Aldrich
正己烷, suitable for HPLC, ≥95%
Sigma-Aldrich
正己烷, anhydrous, 95%
Sigma-Aldrich
正己烷, ReagentPlus®, ≥99%
Sigma-Aldrich
正己烷, Laboratory Reagent, ≥95%
Sigma-Aldrich
正己烷, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
丙酮, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
丙酮, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
正己烷, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99% (GC)
Sigma-Aldrich
二氯甲烷, puriss. p.a., ACS reagent, reag. ISO, ≥99.9% (GC)
Sigma-Aldrich
正磷酸钠 十二水合物, ≥98%
Supelco
丙酮, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
丙酮, analytical standard
Supelco
二氯甲烷, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
二氯甲烷, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
丙酮, suitable for HPLC, ≥99.8%
Sigma-Aldrich
丙酮, ACS reagent, ≥99.5%
Sigma-Aldrich
正磷酸钠 十二水合物, ACS reagent, ≥98%
Supelco
二氯甲烷, analytical standard
USP
丙酮, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
二氯甲烷, puriss., meets analytical specification of Ph. Eur., NF, ≥99% (GC)
Sigma-Aldrich
芴, 98%
Supelco
正己烷, analytical standard