跳转至内容
Merck
CN
  • Polymer scaffolds with preferential parallel grooves enhance nerve regeneration.

Polymer scaffolds with preferential parallel grooves enhance nerve regeneration.

Tissue engineering. Part A (2014-12-02)
Atefeh Mobasseri, Alessandro Faroni, Ben M Minogue, Sandra Downes, Giorgio Terenghi, Adam J Reid
摘要

We have modified the surface topography of poly ɛ-caprolactone (PCL) and polylactic acid (PLA) blended films to improve cell proliferation and to guide the regeneration of peripheral nerves. Films with differing shaped grooves were made using patterned silicon templates, sloped walls (SL), V-shaped (V), and square-shaped (SQ), and compared with nongrooved surfaces with micropits. The solvent cast films were tested in vitro using adult adipose-derived stem cells differentiated to Schwann cell-like cells. Cell attachment, proliferation, and cell orientation were all improved on the grooved surfaces, with SL grooves giving the best results. We present in vivo data on Sprague-Dawley rat sciatic nerve injury with a 10-mm gap, evaluating nerve regeneration at 3 weeks across a polymer nerve conduit modified with intraluminal grooves (SL, V, and SQ) and differing wall thicknesses (70, 100, 120, and 210 μm). The SL-grooved nerve conduit showed a significant improvement over the other topographical-shaped grooves, while increasing the conduit wall thickness saw no positive effect on the biological response of the regenerating nerve. Furthermore, the preferred SL-grooved conduit (C) with 70 μm wall thickness was compared with the current clinical gold standard of autologous nerve graft (Ag) in the rat 10-mm sciatic nerve gap model. At 3 weeks postsurgery, all nerve gaps across both groups were bridged with regenerated nerve fibers. At 16 weeks, features of regenerated axons were comparable between the autograft (Ag) and conduit (C) groups. End organ assessments of muscle weight, electromyography, and skin reinnervation were also similar between the groups. The comparable experimental outcome between conduit and autograft, suggests that the PCL/PLA conduit with inner lumen microstructured grooves could be used as a potential alternative treatment for peripheral nerve repair.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
2-巯基乙醇, Molecular Biology, suitable for electrophoresis, suitable for cell culture, BioReagent, 99% (GC/titration)
Sigma-Aldrich
2-巯基乙醇, ≥99.0%
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
2-巯基乙醇, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
荧光素, suitable for fluorescence, free acid
Supelco
2-巯基乙醇, derivatization grade (HPLC), LiChropur, ≥99.0% (GC)
荧光素, European Pharmacopoeia (EP) Reference Standard