跳转至内容
Merck
CN
  • Sphere-forming capacity as an enrichment strategy for epithelial-like stem cells from equine skin.

Sphere-forming capacity as an enrichment strategy for epithelial-like stem cells from equine skin.

Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology (2014-10-04)
Bizunesh M Borena, Evelyne Meyer, Koen Chiers, Ann Martens, Kristel Demeyere, Sarah Y Broeckx, Luc Duchateau, Jan H Spaas
摘要

Mammal skin plays a pivotal role in several life preserving processes and extensive damage may therefore be life threatening. Physiological skin regeneration is achieved through ongoing somatic stem cell differentiation within the epidermis and the hair follicle. However, in severe pathological cases, such as burn wounds, chronic wounds, and ulcers, the endogenous repair mechanisms might be insufficient. For this reason, exogenous purification and multiplication of epithelial-like stem/progenitor cells (EpSCs) might be useful in the treatment of these skin diseases. However, only few reports are available on the isolation, purification and characterization of EpSCs using suspension cultures. In the present study, skin was harvested from 6 mares and EpSCs were isolated and purified. In addition to their characterization based on phenotypic and functional properties, sphere formation was assessed upon isolation, i.e. at passage 0 (P0), and at early (P4) and late (P10) passages using different culture conditions. On average 0.53 ± 0.28% of these primary skin-derived cells showed the capacity to form spheres and hence possessed stem cell properties. Moreover, significantly more spheres were observed in EpSC medium versus differentiation medium, corroborating the EpSCs' privileged ability to survive in suspension. Furthermore, the number of cells per sphere significantly increased over time as well as with subsequent passaging. Upon immunophenotyping, the presumed EpSCs were found to co-express cytokeratin (CK) 14, Casein kinase 2 beta and Major Histocompatibility Complex (MHC) I and expressed no pan CK and wide CK. Only a few cells expressed MHC II. Their differentiation towards keratinocytes (at P4 and P10) was confirmed based on co-expression of CK 14, Casein kinase 2 beta, pan CK and wide CK. In one of six isolates, a non-EpSC cell type was noticed in adherent culture. Although morphological features and immunohistochemistry (IHC) confirmed a keratinocyte phenotype, this culture could be purified by seeding the cells in suspension at ultralow clonal densities (1 and 10 cells/cm(2)), yet with a significantly lower sphere forming efficiency in comparison to pure EpSCs (P = 0.0012). The present study demonstrated sphere formation as a valuable tool to purify EpSCs upon their isolation and assessed its effectiveness at different clonal seeding densities for eliminating a cellular contamination.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
二甲基亚砜, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
二甲基亚砜, ACS reagent, ≥99.9%
Sigma-Aldrich
二甲基亚砜, Molecular Biology
Sigma-Aldrich
二甲基亚砜, suitable for HPLC, ≥99.7%
Sigma-Aldrich
二甲基亚砜, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
二甲基亚砜, ReagentPlus®, ≥99.5%
Sigma-Aldrich
二甲基亚砜, anhydrous, ≥99.9%
Sigma-Aldrich
二甲基亚砜, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
2-巯基乙醇, Molecular Biology, suitable for electrophoresis, suitable for cell culture, BioReagent, 99% (GC/titration)
Sigma-Aldrich
2-巯基乙醇, ≥99.0%
Sigma-Aldrich
二甲基亚砜, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
碘化丙啶, ≥94.0% (HPLC)
Sigma-Aldrich
2-巯基乙醇, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
二甲基亚砜, BioUltra, Molecular Biology, ≥99.5% (GC)
Millipore
过氧化氢 溶液, 3%, suitable for microbiology
Sigma-Aldrich
过氧化氢 溶液, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
二甲基亚砜, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
碘化丙啶 溶液
Sigma-Aldrich
过氧化氢 溶液, contains inhibitor, 35 wt. % in H2O
Sigma-Aldrich
二甲基亚砜, PCR Reagent
Sigma-Aldrich
过氧化氢 溶液, 34.5-36.5%
Sigma-Aldrich
碘化丙啶, ≥94% (HPLC)
Sigma-Aldrich
二甲基亚砜, puriss. p.a., dried, ≤0.02% water
Sigma-Aldrich
FGF-2 human, recombinant, expressed in E. coli, ≥95% (SDS-PAGE), ≥95% (HPLC)
Supelco
二甲基亚砜, analytical standard
Supelco
二甲基亚砜, for inorganic trace analysis, ≥99.99995% (metals basis)
USP
二甲基亚砜, United States Pharmacopeia (USP) Reference Standard
Supelco
2-巯基乙醇, derivatization grade (HPLC), LiChropur, ≥99.0% (GC)
二甲基亚砜, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)