Merck
CN
  • Interleukin-6-dependent phenotypic modulation of cardiac fibroblasts after acute myocardial infarction.

Interleukin-6-dependent phenotypic modulation of cardiac fibroblasts after acute myocardial infarction.

Basic research in cardiology (2014-09-23)
Julia Müller, Simone Gorressen, Maria Grandoch, Kathrin Feldmann, Inga Kretschmer, Stefan Lehr, Zhaoping Ding, Joachim P Schmitt, Jürgen Schrader, Christoph Garbers, Gerd Heusch, Malte Kelm, Jürgen Scheller, Jens W Fischer
摘要

Interleukin-6 (IL-6) is a multifunctional cytokine that orchestrates the immune response to a wide variety of pathophysiologic challenges but also contributes to tissue homeostasis. Furthermore, IL-6 is elevated in patients with acute myocardial infarction. Hyaluronan (HA) is an extracellular carbohydrate that has been implicated in wound healing and accumulates after acute myocardial infarction (AMI). Aim of this study was to investigate the involvement of IL-6 in the regulation of the HA-matrix in the early phase of infarct healing. In the present study, we show by the use of a blocking anti-IL-6 antibody, that endogenous IL-6 rapidly but transiently increased HA-synthase (HAS) 1 and 2 expression resulting in the formation of a HA-rich matrix acutely after AMI in mice. In vitro, IL-6 induced HAS1 and 2 via STAT3 phosphorylation in cardiac fibroblasts (CF) and supported a myofibroblastic phenotype in a HA-dependent manner. Furthermore, CCL5 and MCP1 expression were dependent on IL-6, HA-synthesis and the HA-receptor CD44 as shown in cultured CF derived from CD44 knockout mice. In vivo after AMI, blocking IL-6 decreased HA-matrix formation in the peri-infarct region and alpha-smooth muscle actin-positive myofibroblasts. Blocking IL-6 also reduced neutrophil infiltration in infarcted left ventricles. Moreover, treatment with the blocking IL-6 antibody reduced cardiac ejection fraction and increased infarct size 3 weeks after AMI. These findings support a functionally important role for IL-6 in CF by transiently inducing a HA-rich matrix that in turn promotes a myofibroblastic phenotype and inflammatory responses, and ultimately establishes a cardioprotective program after AMI.

材料
货号
品牌
产品描述

Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
乙二胺四乙酸, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
乙二胺四乙酸 二钠盐 溶液, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
2,3,5-氯化三苯基四氮唑, ≥98.0% (HPLC)
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
乙二胺四乙酸, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
乙二胺四乙酸 溶液, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Supelco
氯化钠, reference material for titrimetry, certified by BAM, ≥99.5%
Supelco
氯化钠, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
1-萘酚, ReagentPlus®, ≥99%
Sigma-Aldrich
乙二胺四乙酸, purified grade, ≥98.5%, powder
Sigma-Aldrich
4-甲基伞形酮, ≥98%
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
乙二胺四乙酸, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
四氯化钛(IV) 溶液, 1.0 M in methylene chloride
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
乙二胺四乙酸, 99.995% trace metals basis
Sigma-Aldrich
氯化钠 溶液, 0.85%
Sigma-Aldrich
氯化钠, tested according to Ph. Eur.
Sigma-Aldrich
1-萘酚, puriss. p.a., reag. Ph. Eur., ≥99% (GC)
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
乙二胺四乙酸, ≥98.0% (KT)
Sigma-Aldrich
乙二胺四乙酸, BioUltra, ≥99.0% (KT)