跳转至内容
Merck
CN
  • Physical and biological characterization of ferromagnetic fiber networks: effect of fibrin deposition on short-term in vitro responses of human osteoblasts.

Physical and biological characterization of ferromagnetic fiber networks: effect of fibrin deposition on short-term in vitro responses of human osteoblasts.

Tissue engineering. Part A (2014-08-26)
Rose L Spear, Brajith Srigengan, Suresh Neelakantan, Wolfram Bosbach, Roger A Brooks, Athina E Markaki
摘要

Ferromagnetic fiber networks have the potential to deform in vivo imparting therapeutic levels of strain on in-growing periprosthetic bone tissue. 444 Ferritic stainless steel provides a suitable material for this application due to its ability to support cultures of human osteoblasts (HObs) without eliciting undue inflammatory responses from monocytes in vitro. In the present article, a 444 fiber network, containing 17 vol% fibers, has been investigated. The network architecture was obtained by applying a skeletonization algorithm to three-dimensional tomographic reconstructions of the fiber networks. Elastic properties were measured using low-frequency vibration testing, providing globally averaged properties as opposed to mechanical methods that yield only local properties. The optimal region for transduction of strain to cells lies between the ferromagnetic fibers. However, cell attachment, at early time points, occurs primarily on fiber surfaces. Deposition of fibrin, a fibrous protein involved in acute inflammatory responses, can facilitate cell attachment within this optimal region at early time points. The current work compared physiological (3 and 5 g·L(-1)) and supraphysiological fibrinogen concentrations (10 g·L(-1)), using static in vitro seeding of HObs, to determine the effect of fibrin deposition on cell responses during the first week of cell culture. Early cell attachment within the interfiber spaces was observed in all fibrin-containing samples, supported by fibrin nanofibers. Fibrin deposition influenced the seeding, metabolic activity, and early stage differentiation of HObs cultured in the fibrin-containing fiber networks in a concentration-dependant manner. While initial cell attachment for networks with fibrin deposited from low physiological concentrations was similar to control samples without fibrin deposition, significantly higher HObs attached onto high physiological and supraphysiological concentrations. Despite higher cell numbers with supraphysiological concentrations, cell metabolic activities were similar for all fibrinogen concentrations. Further, cells cultured on supraphysiological concentrations exhibited lower cell differentiation as measured by alkaline phosphatase activity at early time points. Overall, the current study suggests that physiological fibrinogen concentrations would be more suitable than supraphysiological concentrations for supporting early cell activity in porous implant coatings.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
乙醇,Pure 200纯度, Molecular Biology
Sigma-Aldrich
纯乙醇, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
纯乙醇, 200 proof
Sigma-Aldrich
纯乙醇, 200 proof, meets USP testing specifications
Sigma-Aldrich
纯乙醇, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
甲醛 溶液, Molecular Biology, 36.5-38% in H2O
Sigma-Aldrich
乙醇,Pure 190纯度, for molecular biology
Sigma-Aldrich
甲醛 溶液, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
SAFC
甲醛 溶液, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
L -抗坏血酸, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
六甲基二硅氮烷, reagent grade, ≥99%
Sigma-Aldrich
纯乙醇, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
L -抗坏血酸, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
L -抗坏血酸, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L -抗坏血酸, 99%
Sigma-Aldrich
L -抗坏血酸, reagent grade, crystalline
Supelco
维生素C, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
酒精, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
USP
抗坏血酸, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
甲醛 溶液, Molecular Biology, BioReagent, ≥36.0% in H2O (T)
Supelco
无水乙醇, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
纯乙醇, 190 proof, meets USP testing specifications
Sigma-Aldrich
L -抗坏血酸, ACS reagent, ≥99%
Sigma-Aldrich
聚四氟乙烯, powder (free-flowing), 1 μm particle size
Sigma-Aldrich
六甲基二硅氮烷, ReagentPlus®, 99.9%
Supelco
L -抗坏血酸, analytical standard
Supelco
酒精, standard for GC
Sigma-Aldrich
酒精, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
L -抗坏血酸, meets USP testing specifications
Sigma-Aldrich
甲醛 溶液, meets analytical specification of USP, ≥34.5 wt. %