跳转至内容
Merck
CN
  • Method development and optimization on cinchona and chiral sulfonic acid-based zwitterionic stationary phases for enantiomer separations of free amino acids by high-performance liquid chromatography.

Method development and optimization on cinchona and chiral sulfonic acid-based zwitterionic stationary phases for enantiomer separations of free amino acids by high-performance liquid chromatography.

Journal of chromatography. A (2014-06-26)
Tong Zhang, Emilie Holder, Pilar Franco, Wolfgang Lindner
摘要

CHIRALPAK ZWIX(+) and ZWIX(-) are cinchona alkaloid-derived zwitterionic chiral stationary phases (CSPs) containing a chiral sulfonic acid motif which serves as negatively charged interaction site. They are versatile for direct enantiomer resolution of amino acids and many other ampholytic compounds by HPLC. The synergistic double ion-pairing between the zwittrionic chiral selector and the ampholyte is the basis for interaction and chiral recognition mechanisms. ZWIX(+) and ZWIX(-) type CSPs or columns behave pseudo-enantiomerically and provide the feature of reversing enantiomer elution order by column switching. In the current study, extensive experimental work was carried out with the aim of developing schemes for an efficient generic screening and proposing straightforward approaches for method optimization on these ZWIX columns. Various chromatographic parameters were investigated using a large series of diverse amino acids and analogues for the purpose. The role of methanol (MeOH) as the protic solvent in the mobile phase is confirmed to be essential. The presence of water in a low percentage is beneficial for peak shape, resolution, analysis speed, sample solubility and MS detection performance. The involvement of acetonitrile (ACN) or tetrahydrofuran (THF) can help for adjusting retention time and selectivity. Incorporation of a suitable pair of acidic-basic additives at a right ratio in the mobile phase is determinant as well for the double ion-pairing mechanism. 50 mM formic acid+25 mM diethylamine (or ammonium hydroxide) in MeOH/ACN/H₂O and in MeOH/THF/H₂O at 49:49:2 (by volume) are recommended as the starting mobile phases for method development. Some other parameters are also considered in the proposed scheme to achieve successful enantioselective or stereoselective separation of the ampholytes.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
甲醇, suitable for HPLC, ≥99.9%
Sigma-Aldrich
四氢呋喃, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
四氢呋喃, contains 200-400 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
甲醇, HPLC Plus, ≥99.9%
Sigma-Aldrich
乙腈, ACS reagent, ≥99.5%
Sigma-Aldrich
四氢呋喃, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
四氢呋喃, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
乙腈, anhydrous, 99.8%
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
乙腈, ≥99.9% (GC)
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
四氢呋喃, ≥99.0%, contains 200-400 ppm BHT as inhibitor, ReagentPlus®
Sigma-Aldrich
四氢呋喃, contains 250 ppm BHT as inhibitor, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.9%
Sigma-Aldrich
乙腈, suitable for HPLC-GC, ≥99.8% (GC)
USP
木精, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
甲醇, BioReagent, ≥99.93%
Supelco
甲醇, analytical standard
Supelco
甲醇, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
四氢呋喃, ACS reagent, ≥99.0%, contains 200-400 ppm BHT as inhibitor
Sigma-Aldrich
乙腈, biotech. grade, ≥99.93%
Sigma-Aldrich
乙腈, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%