跳转至内容
Merck
CN
  • Titanium Dioxide Nanoparticles Trigger Loss of Function and Perturbation of Mitochondrial Dynamics in Primary Hepatocytes.

Titanium Dioxide Nanoparticles Trigger Loss of Function and Perturbation of Mitochondrial Dynamics in Primary Hepatocytes.

PloS one (2015-08-08)
Vaishaali Natarajan, Christina L Wilson, Stephen L Hayward, Srivatsan Kidambi
摘要

Titanium dioxide (TiO2) nanoparticles are one of the most highly manufactured and employed nanomaterials in the world with applications in copious industrial and consumer products. The liver is a major accumulation site for many nanoparticles, including TiO2, directly through intentional exposure or indirectly through unintentional ingestion via water, food or animals and increased environmental contamination. Growing concerns over the current usage of TiO2 coupled with the lack of mechanistic understanding of its potential health risk is the motivation for this study. Here we determined the toxic effect of three different TiO2 nanoparticles (commercially available rutile, anatase and P25) on primary rat hepatocytes. Specifically, we evaluated events related to hepatocyte functions and mitochondrial dynamics: (1) urea and albumin synthesis using colorimetric and ELISA assays, respectively; (2) redox signaling mechanisms by measuring reactive oxygen species (ROS) production, manganese superoxide dismutase (MnSOD) activity and mitochondrial membrane potential (MMP); (3) OPA1 and Mfn-1 expression that mediates the mitochondrial dynamics by PCR; and (4) mitochondrial morphology by MitoTracker Green FM staining. All three TiO2 nanoparticles induced a significant loss (p < 0.05) in hepatocyte functions even at concentrations as low as 50 ppm with commercially used P25 causing maximum damage. TiO2 nanoparticles induced a strong oxidative stress in primary hepatocytes. TiO2 nanoparticles exposure also resulted in morphological changes in mitochondria and substantial loss in the fusion process, thus impairing the mitochondrial dynamics. Although this study demonstrated that TiO2 nanoparticles exposure resulted in substantial damage to primary hepatocytes, more in vitro and in vivo studies are required to determine the complete toxicological mechanism in primary hepatocytes and subsequently liver function.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
纯乙醇, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
尿素, powder, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
噻唑蓝, 98%
Sigma-Aldrich
噻唑蓝, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥97.5% (HPLC)
Sigma-Aldrich
六甲基二硅氮烷, reagent grade, ≥99%
Sigma-Aldrich
纯乙醇, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
尿素, ACS reagent, 99.0-100.5%
Supelco
尿素, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
尿素 溶液, BioUltra, ~8 M in H2O
Sigma-Aldrich
尿素, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
尿素, BioUltra, Molecular Biology, 99% (T)
Sigma-Aldrich
纯乙醇, 190 proof, meets USP testing specifications
Sigma-Aldrich
六甲基二硅氮烷, ReagentPlus®, 99.9%
Sigma-Aldrich
尿素, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
2,3-丁二酮一肟, ≥98%
Sigma-Aldrich
尿素, suitable for electrophoresis
Sigma-Aldrich
尿素, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%, 99.0-101.0% (calc. on dry substance)
Sigma-Aldrich
尿素, meets USP testing specifications
Supelco
10% (v/v) 乙醇标准品, 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
尿素, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99%
Sigma-Aldrich
尿素 溶液, 40 % (w/v) in H2O
Sigma-Aldrich
四甲基罗丹明甲酯高氯酸盐, ≥95%
Sigma-Aldrich
80% v/v 乙醇固定液, suitable for fixing solution (blood films)
Sigma-Aldrich
纯乙醇, 190 proof, ACS reagent, meets USP testing specifications, Excise Tax-free, Permit for use required
Sigma-Aldrich
尿素-12C, 99.9 atom % 12C
Sigma-Aldrich
纯乙醇, 200 proof, ACS reagent, meets USP testing specifications, Excise Tax-free, Permit for use required
Sigma-Aldrich
酒精, absolute, sales not in Germany, ≥99.8% (vol.)
Sigma-Aldrich
尿素, Vetec, reagent grade, 99%
Sigma-Aldrich
纯乙醇, 160 proof, Excise Tax-free, Permit for use required