跳转至内容
Merck
CN
  • Muscle-specific 4E-BP1 signaling activation improves metabolic parameters during aging and obesity.

Muscle-specific 4E-BP1 signaling activation improves metabolic parameters during aging and obesity.

The Journal of clinical investigation (2015-06-30)
Shihyin Tsai, Joanna M Sitzmann, Somasish G Dastidar, Ariana A Rodriguez, Stephanie L Vu, Circe E McDonald, Emmeline C Academia, Monique N O'Leary, Travis D Ashe, Albert R La Spada, Brian K Kennedy
摘要

Eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) is a key downstream effector of mTOR complex 1 (mTORC1) that represses cap-dependent mRNA translation initiation by sequestering the translation initiation factor eIF4E. Reduced mTORC1 signaling is associated with life span extension and improved metabolic homeostasis, yet the downstream targets that mediate these benefits are unclear. Here, we demonstrated that enhanced 4E-BP1 activity in mouse skeletal muscle protects against age- and diet-induced insulin resistance and metabolic rate decline. Transgenic animals displayed increased energy expenditure; altered adipose tissue distribution, including reduced white adipose accumulation and preserved brown adipose mass; and were protected from hepatic steatosis. Skeletal muscle-specific 4E-BP1 mediated metabolic protection directly through increased translation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and enhanced respiratory function. Non-cell autonomous protection was through preservation of brown adipose tissue metabolism, which was increased in 4E-BP1 transgenic animals during normal aging and in a response to diet-induced type 2 diabetes. Adipose phenotypes may derive from enhanced skeletal muscle expression and secretion of the known myokine FGF21. Unlike skeletal muscle, enhanced adipose-specific 4E-BP1 activity was not protective but instead was deleterious in response to the same challenges. These findings indicate that regulation of 4E-BP1 in skeletal muscle may serve as an important conduit through which mTORC1 controls metabolism.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
十二烷基硫酸钠, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
磷酸酶抑制剂混合物3, DMSO solution
Sigma-Aldrich
磷酸酶抑制剂混合物2, aqueous solution (dark coloration may develop upon storage, which does not affect the activity)
Sigma-Aldrich
十二烷基硫酸钠, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
尿素, powder, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
十二烷基硫酸钠, ACS reagent, ≥99.0%
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, Molecular Biology, 10% in H2O
Sigma-Aldrich
尿素, ACS reagent, 99.0-100.5%
Sigma-Aldrich
十二烷基硫酸钠, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
乙二胺四乙酸, ACS reagent, 99.4-100.6%, powder
Roche
cOmplete Mini蛋白酶抑制剂混合物, Tablets provided in EASYpacks
Sigma-Aldrich
乙二胺四乙酸, anhydrous, crystalline, BioReagent, suitable for cell culture
Supelco
尿素, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
乙二胺四乙酸 溶液, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
十二烷基硫酸钠, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, 20% in H2O
Sigma-Aldrich
尿素 溶液, BioUltra, ~8 M in H2O
Sigma-Aldrich
蔗糖, ACS reagent
Sigma-Aldrich
乙二胺四乙酸, 99.995% trace metals basis
Supelco
十二烷基硫酸钠, dust-free pellets, suitable for electrophoresis, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
乙二胺四乙酸, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
尿素, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
尿素, BioUltra, Molecular Biology, 99% (T)
Sigma-Aldrich
尿素, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
十二烷基硫酸钠, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
十二烷基硫酸钠, ≥98.0% (GC)
Sigma-Aldrich
蔗糖, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
尿素, suitable for electrophoresis
Sigma-Aldrich
十二烷基硫酸钠, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
尿素, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%, 99.0-101.0% (calc. on dry substance)