跳转至内容
Merck
CN
  • JmjC Domain-containing Protein 6 (Jmjd6) Derepresses the Transcriptional Repressor Transcription Factor 7-like 1 (Tcf7l1) and Is Required for Body Axis Patterning during Xenopus Embryogenesis.

JmjC Domain-containing Protein 6 (Jmjd6) Derepresses the Transcriptional Repressor Transcription Factor 7-like 1 (Tcf7l1) and Is Required for Body Axis Patterning during Xenopus Embryogenesis.

The Journal of biological chemistry (2015-07-15)
Xuena Zhang, Yan Gao, Lei Lu, Zan Zhang, Shengchun Gan, Liyang Xu, Anhua Lei, Ying Cao
摘要

Tcf7l1 (also known as Tcf3) is a bimodal transcription factor that plays essential roles in embryogenesis and embryonic and adult stem cells. On one hand, Tcf7l1 works as transcriptional repressor via the recruitment of Groucho-related transcriptional corepressors to repress the transcription of Wnt target genes, and, on the other hand, it activates Wnt target genes when Wnt-activated β-catenin interacts with it. However, how its activity is modulated is not well understood. Here we demonstrate that a JmjC-domain containing protein, Jmjd6, interacts with Tcf7l and derepresses Tcf7l. We show that Jmjd6 binds to a region of Tcf7l1 that is also responsible for Groucho interaction, therefore making it possible that Jmjd6 binding displaces the Groucho transcriptional corepressor from Tcf7l1. Moreover, we show that Jmjd6 antagonizes the repression effect of Tcf7l1 on target gene transcription and is able to enhance β-catenin-induced gene activation and that, vice versa, inhibition of Jmjd6 activity compromises gene activation in both cells and Xenopus early embryos. We also show that jmjd6 is both maternally and zygotically transcribed during Xenopus embryogenesis. Loss of Jmjd6 function causes defects in anterioposterior body axis formation and down-regulation of genes that are involved in anterioposterior axis patterning. The results elucidate a novel mechanism underlying the regulation of Tcf7l1 activity and the regulation of embryonic body axis formation.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
氯化钠, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
乙二胺四乙酸, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
乙二胺四乙酸, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
乙二胺四乙酸 溶液, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
乙二胺四乙酸, 99.995% trace metals basis
Sigma-Aldrich
乙二胺四乙酸, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
硫酸镁, BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
氯化钠, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠 溶液, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
硫酸镁 溶液, Molecular Biology, 1.00 M±0.04 M
Sigma-Aldrich
硫酸镁 溶液, BioUltra, Molecular Biology
Sigma-Aldrich
乙二胺四乙酸, purified grade, ≥98.5%, powder
Sigma-Aldrich
硫酸镁, ≥99.99% trace metals basis
Sigma-Aldrich
氯化钠 溶液, 0.85%
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Millipore
Anti-c-Myc 琼脂糖亲和凝胶 兔抗, affinity isolated antibody
Sigma-Aldrich
氯化钠, tablet
Sigma-Aldrich
氯化钠-35Cl, 99 atom % 35Cl
Sigma-Aldrich
氯化钠, random crystals, 99.9% trace metals basis
Sigma-Aldrich
氯化钠, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
抗 兔 IgG(全分子)、F(ab′ 2 片段 –Cy3 绵羊抗, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
氯化钠, Vetec, reagent grade, 99%