Merck
CN
  • Involvement of multiple cellular pathways in regulating resistance to tamoxifen in BIK-suppressed MCF-7 cells.

Involvement of multiple cellular pathways in regulating resistance to tamoxifen in BIK-suppressed MCF-7 cells.

Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine (2015-04-12)
Rubí Viedma-Rodríguez, Ruth Ruiz Esparza-Garrido, Luis Arturo Baiza-Gutman, Miguel Ángel Velázquez-Flores, Alejandro García-Carrancá, Fabio Salamanca-Gómez, Diego Arenas-Aranda
摘要

Majority of women with estrogen receptor (ER)-positive breast cancers initially respond to hormone therapies such as tamoxifen (TAM; antagonist of estrogen). However, many tumors eventually become resistant to TAM. Therefore, understanding the various cellular components involved in causing resistance to TAM is of paramount importance in designing novel entities for efficacious hormone therapy. Previously, we found that suppression of BIK gene expression induced TAM resistance in MCF-7 breast cancer cells. In order to understand the response of these cells to TAM and its association with resistance, a microarray analysis of gene expression was performed in the BIK-suppressed MCF-7 cells and compared it to the TAM-only-treated cells (controls). Several genes participating in various cellular pathways were identified. Molecules identified in the drug resistance pathway were 14-3-3z or YWHAZ, WEE1, PRKACA, NADK, and HSP90AA 1. Further, genes involved in cell cycle control, apoptosis, and cell proliferation were also found differentially expressed in these cells. Transcriptional and translational analysis of key molecules such as STAT2, AKT 3, and 14-3-3z revealed similar changes at the messenger RNA (mRNA) as well as at the protein level. Importantly, there was no cytotoxic effect of TAM on BIK-suppressed MCF-7 cells. Further, these cells were not arrested at the G0-G1 phase of the cell cycle although 30 % of BIK-suppressed cells were arrested at the G2 phase of the cycle on TAM treatment. Furthermore, we found a relevant interaction between 14-3-3z and WEE1, suggesting that the cytotoxic effect of TAM was prevented in BIK-suppressed cells because this interaction leads to transitory arrest in the G2 phase leading to the repair of damaged DNA and allowing the cells to proliferate.

材料
货号
品牌
产品描述

Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸 水合物, ≥96.5% (HPLC), ≥96.5% (spectrophotometric assay), from yeast
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸 水合物, ≥99%
Sigma-Aldrich
鸟嘌呤, 98%
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸 水合物, Grade AA-1
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸 水合物, ≥95% (HPLC)
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸 水合物, ≥98%, BioUltra, from yeast
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸, pkg of 10 mg (per vial)
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸 水合物, purified by column chromatography, ≥99%
Sigma-Aldrich
DL -天冬氨酸, ≥99% (TLC)
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸, pkg of 50 mg (per vial)
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸 水合物, suitable for cell culture, ≥96.5% (HPLC), ≥96.5% (spectrophotometric assay), from yeast
Sigma-Aldrich
DL-半胱氨酸, technical grade
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸, pkg of 20 mg (per vial)
Sigma-Aldrich
鸟嘌呤, BioUltra
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸 锂盐 来源于酿酒酵母, ≥95%
Sigma-Aldrich
DL-亮氨酸, ≥99% (HPLC)
Sigma-Aldrich
N-乙酰普鲁卡因胺 盐酸盐, ≥99% (HPLC), powder
Sigma-Aldrich
N-乙酰基-D-青霉胺, for HPLC derivatization, ≥99.0% (T)
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸 水合物, Vetec, reagent grade, ≥96.5%
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Blk
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Bik