跳转至内容
Merck
CN
  • Exovascular application of epigallocatechin-3-O-gallate-releasing electrospun poly(L-lactide glycolic acid) fiber sheets to reduce intimal hyperplasia in injured abdominal aorta.

Exovascular application of epigallocatechin-3-O-gallate-releasing electrospun poly(L-lactide glycolic acid) fiber sheets to reduce intimal hyperplasia in injured abdominal aorta.

Biomedical materials (Bristol, England) (2015-09-24)
Mi Hee Lee, Byeong-ju Kwon, Min-Ah Koo, Eui Hwa Jang, Gyeung Mi Seon, Jong-Chul Park
摘要

Intimal hyperplasia is an excessive ingrowth of tissue resulting in chronic structural lesions commonly found at sites of atherosclerotic lesions, arterial angioplasty, vascular graft anastomoses, and other vascular abnormalities. Epigallocatechin-3-O-gallate (EGCG) was shown to elicit antioxidant, anti-proliferative, and anti-thrombogenic effects. In this study, we used an electrospinning technique to synthesize EGCG-eluting biodegradable poly(L-lactide glycolic acid) (PLGA) fiber sheets for local delivery of EGCG and investigated the effect of their exovascular application on intimal hyperplasia following balloon-induced abdominal aorta injury in a rabbit experimental model. The morphology of the composite sheets was characterized using scanning electron microscopy and Fourier transform-infrared spectroscopy. EGCG was loaded and dispersed into the PLGA-based electrospun fibers. The EGCG-loaded PLGA sheets exhibited sustained EGCG release following the initial 24 h of burst release in phosphate-buffered saline. In vivo studies demonstrated significant inhibition of intimal hyperplasia following the application of the EGCG-eluting electrospun PLGA fiber sheets, compared with vehicle PLGA controls. In conclusion, our results show that exovascular application of EGCG-eluting PLGA electrospun fiber sheets may provide a useful system for the effective local delivery of drugs for the prevention of intimal hyperplasia.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
N,N-二甲基甲酰胺, ACS reagent, ≥99.8%
Sigma-Aldrich
四氢呋喃, contains 200-400 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
N,N-二甲基甲酰胺, anhydrous, 99.8%
Sigma-Aldrich
四氢呋喃, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
四氢呋喃, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
N,N-二甲基甲酰胺, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
N,N-二甲基甲酰胺, ReagentPlus®, ≥99%
Sigma-Aldrich
N,N-二甲基甲酰胺, Molecular Biology, ≥99%
Sigma-Aldrich
四氢呋喃, ≥99.0%, contains 200-400 ppm BHT as inhibitor, ReagentPlus®
Sigma-Aldrich
四氢呋喃, contains 250 ppm BHT as inhibitor, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.9%
Sigma-Aldrich
(-)-表没食子儿茶素没食子酸酯, ≥95%
Sigma-Aldrich
N,N-二甲基甲酰胺, biotech. grade, ≥99.9%
Sigma-Aldrich
(-)-表没食子儿茶素没食子酸酯, ≥80% (HPLC), from green tea
Sigma-Aldrich
四氢呋喃, ACS reagent, ≥99.0%, contains 200-400 ppm BHT as inhibitor
Sigma-Aldrich
四氢呋喃, inhibitor-free, purification grade