Merck
CN
  • RNA editing in eag potassium channels: biophysical consequences of editing a conserved S6 residue.

RNA editing in eag potassium channels: biophysical consequences of editing a conserved S6 residue.

Channels (Austin, Tex.) (2012-10-16)
Mary Y Ryan, Rachel Maloney, Jeffrey D Fineberg, Robert A Reenan, Richard Horn
摘要

RNA editing at four sites in eag, a Drosophila voltage-gated potassium channel, results in the substitution of amino acids into the final protein product that are not encoded by the genome. These sites and the editing alterations introduced are K467R (Site 1, top of the S6 segment), Y548C, N567D and K699R (sites 2-4, within the cytoplasmic C-terminal domain). We mutated these residues individually and expressed the channels in Xenopus oocytes. A fully edited construct (all four sites) has the slowest activation kinetics and a paucity of inactivation, whereas the fully unedited channel exhibits the fastest activation and most dramatic inactivation. Editing Site 1 inhibits steady-state inactivation. Mutating Site 1 to the neutral residues resulted in intermediate inactivation phenotypes and a leftward shift of the peak current-voltage relationship. Activation kinetics display a Cole-Moore shift that is enhanced by RNA editing. Normalized open probability relationships for 467Q, 467R and 467K are superimposable, indicating little effect of the mutations on steady-state activation. 467Q and 467R enhance instantaneous inward rectification, indicating a role of this residue in ion permeation. Intracellular tetrabutylammonium blocks 467K significantly better than 467R. Block by intracellular, but not extracellular, tetraethylammonium interferes with inactivation. The fraction of inactivated current is reduced at higher extracellular Mg(+2) concentrations, and channels edited at Site 1 are more sensitive to changes in extracellular Mg(+2) than unedited channels. These results show that even a minor change in amino acid side-chain chemistry and size can have a dramatic impact on channel biophysics, and that RNA editing is important for fine-tuning the channel's function.

材料
货号
品牌
产品描述

Sigma-Aldrich
四丁基氟化铵 溶液, 1.0 M in THF
Sigma-Aldrich
四丁基氢氧化铵 溶液, 40 wt. % in H2O
Sigma-Aldrich
四丁基氢氧化铵 溶液, 1.0 M in methanol
Supelco
四丁基氢氧化铵 溶液, ~40% in water, suitable for ion chromatography
Sigma-Aldrich
四丁基硫酸氢铵, 97%
Sigma-Aldrich
四丁基磷酸氢铵 一元, puriss., 99% (T)
Sigma-Aldrich
四丁基磷酸二氢铵 溶液, 1.0 M in H2O
Sigma-Aldrich
四丁基硫酸氢铵, puriss., ≥99.0% (T)
Sigma-Aldrich
四丁基溴化铵, ACS reagent, ≥98.0%
Sigma-Aldrich
四丁基氯化铵, ≥97.0% (NT)
Sigma-Aldrich
四丁基溴化铵, ReagentPlus®, ≥99.0%
Supelco
四丁基硫酸氢铵, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
四乙基氯化铵, ≥98% (titration)
Sigma-Aldrich
四丁基碘化铵, reagent grade, 98%
Supelco
四丁基高氯酸铵, for electrochemical analysis, ≥99.0%
Sigma-Aldrich
四乙基氢氧化铵 溶液, 35 wt. % in H2O
Sigma-Aldrich
四丁基高氯酸铵, ≥95.0% (T)
Sigma-Aldrich
四丁基氢氧化铵 溶液, technical, ~40% in H2O (~1.5 M)
Sigma-Aldrich
溴化四乙铵, reagent grade, 98%
Sigma-Aldrich
四丁基氰化铵, 95%
Supelco
四丁基溴化铵, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
四丁基碘化铵, ≥99.0% (AT)
Sigma-Aldrich
四乙基氢氧化铵 溶液, 20 wt. % in H2O
Sigma-Aldrich
四丁基硝酸铵, 97%
Sigma-Aldrich
四丁基氢氧化铵 溶液, 53.5-56.5% in H2O
Sigma-Aldrich
溴化四乙铵, ReagentPlus®, 99%
Sigma-Aldrich
四乙基氯化铵, BioUltra, for molecular biology, ≥99.0% (AT)
Sigma-Aldrich
四丁基氟化铵 溶液, 75 wt. % in H2O
Supelco
四丁基氯化铵, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
四乙基碘化铵, 98%