跳转至内容
Merck
CN
  • Triple combination of siRNAs targeting TGFβ1, TGFβR2, and CTGF enhances reduction of collagen I and smooth muscle actin in corneal fibroblasts.

Triple combination of siRNAs targeting TGFβ1, TGFβR2, and CTGF enhances reduction of collagen I and smooth muscle actin in corneal fibroblasts.

Investigative ophthalmology & visual science (2013-11-28)
Sriniwas Sriram, Paulette Robinson, Liya Pi, Alfred S Lewin, Gregory Schultz
摘要

Transforming growth factor β1 (TGFβ1), TGFβ receptor (TGFβR2), and connective tissue growth factor (CTGF) are key regulators of fibrosis in the cornea and in other tissues, including liver, skin, and kidney. We developed an antifibrotic treatment targeting these three critical scarring genes by using a combination of small interfering RNAs (siRNAs) and assessed its effect on downstream scarring genes, collagen I, and α smooth muscle actin (SMA). Up to six individual siRNAs for each of the three target gene mRNAs were transfected into cultures of rabbit corneal fibroblasts at concentrations from 15 to 90 nM. The knockdown of target gene proteins was measured by ELISA, and the two most effective siRNAs were tested in dual combinations. Knockdown percentages of both individual and dual siRNA combinations were analyzed for synergy by using combination index to predict "effective" and "ineffective" triple siRNA combinations. Effects of both triple siRNA combinations on target and downstream mRNAs were measured by using quantitative RT-PCR, and levels of SMA protein were assessed by immunohistochemistry. Single and dual siRNA combinations produced a wide range of protein knockdown of target genes (5%-80%). The effective triple siRNA combination significantly reduced mRNA levels of target genes (>80%) and downstream scarring genes (>85%), and of SMA protein (>95%), and significantly reduced cell migration without reducing cell viability. Simultaneous targeting of TGFβ1, TGFβR2, and CTGF genes by effective triple siRNA combination produced high knockdown of target and downstream scarring genes without cell toxicity, which may have clinical applications in reducing corneal fibrosis and scarring in other tissues.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
胶原蛋白 来源于人类胎盘, Bornstein and Traub Type IV, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
I型胶原蛋白 溶液 来源于大鼠尾, BioReagent, suitable for cell culture, sterile-filtered
Sigma-Aldrich
胶原蛋白 来源于人类胎盘, Bornstein and Traub Type IV, powder
Sigma-Aldrich
胶原蛋白 来源于大鼠尾, Bornstein and Traub Type I, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
胶原蛋白 来源于鸡胸软骨, Type II (Miller), powder, BioReagent, suitable for cell culture
Sigma-Aldrich
胶原蛋白 来源于小牛皮, Bornstein and Traub Type I, (0.1% solution in 0.1 M acetic acid), aseptically processed, BioReagent, suitable for cell culture
Sigma-Aldrich
胶原蛋白IV型 来源于人类细胞培养基, Bornstein and Traub Type IV, 0.3 mg/mL, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
胶原蛋白 来源于人类胎盘, Bornstein and Traub Type I (Sigma Type VIII), powder
Sigma-Aldrich
胶原 人, Bornstein and Traub Type I, acid soluble, powder, ~95% (SDS-PAGE)
Sigma-Aldrich
胶原蛋白 来源于人类胎盘, Bornstein and Traub Type III (Sigma Type X), powder
Sigma-Aldrich
胶原蛋白 来源于 Engelbreth-Holm-Swarm 小鼠肉瘤基底膜, Type IV (Miller), lyophilized powder, BioReagent, suitable for cell culture
Sigma-Aldrich
胶原蛋白 来源于人类胎盘, Bornstein and Traub Type IV, solution, suitable for cell culture, High Performance
Sigma-Aldrich
胶原蛋白 来源于人类胎盘, Bornstein and Traub Type V (Sigma Type IX), powder
Sigma-Aldrich
胶原 来源于人类胎盘, Bornstein and Traub Type IV, powder