跳转至内容
Merck
CN
  • Recombinant canine single chain insulin analogues: insulin receptor binding capacity and ability to stimulate glucose uptake.

Recombinant canine single chain insulin analogues: insulin receptor binding capacity and ability to stimulate glucose uptake.

Veterinary journal (London, England : 1997) (2014-12-03)
Jamie P Adams, Angela L Holder, Brian Catchpole
摘要

Virtually all diabetic dogs require exogenous insulin therapy to control their hyperglycaemia. In the UK, the only licensed insulin product currently available is a purified porcine insulin preparation. Recombinant insulin is somewhat problematic in terms of its manufacture, since the gene product (preproinsulin) undergoes substantial post-translational modification in pancreatic β cells before it becomes biologically active. The aim of the present study was to develop recombinant canine single chain insulin (SCI) analogues that could be produced in a prokaryotic expression system and which would require minimal processing. Three recombinant SCI constructs were developed in a prokaryotic expression vector, by replacing the insulin C-peptide sequence with one encoding a synthetic peptide (GGGPGKR), or with one of two insulin-like growth factor (IGF)-2 C-peptide coding sequences (human: SRVSRRSR; canine: SRVTRRSSR). Recombinant proteins were expressed in the periplasmic fraction of Escherichia coli and assessed for their ability to bind to the insulin and IGF-1 receptors, and to stimulate glucose uptake in 3T3-L1 adipocytes. All three recombinant SCI analogues demonstrated preferential binding to the insulin receptor compared to the IGF-1 receptor, with increased binding compared to recombinant canine proinsulin. The recombinant SCI analogues stimulated glucose uptake in 3T3-L1 adipocytes compared to negligible uptake using recombinant canine proinsulin, with the canine insulin/cIGF-2 chimaeric SCI analogue demonstrating the greatest effect. Thus, biologically-active recombinant canine SCI analogues can be produced relatively easily in bacteria, which could potentially be used for treatment of diabetic dogs.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
硫酸, ACS reagent, 95.0-98.0%
Sigma-Aldrich
十二烷基硫酸钠, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
十二烷基硫酸钠, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
盐酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
硫酸, 99.999%
Sigma-Aldrich
十二烷基硫酸钠, ACS reagent, ≥99.0%
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, Molecular Biology, 10% in H2O
Sigma-Aldrich
盐酸, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
盐酸, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
十二烷基硫酸钠, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
硫酸, puriss. p.a., for determination of Hg, ACS reagent, reag. ISO, reag. Ph. Eur., 95.0-97.0%
Sigma-Aldrich
IPTG, ≥99% (TLC), ≤0.1% Dioxane
Sigma-Aldrich
乙二胺四乙酸, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
盐酸, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Supelco
蔗糖, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
盐酸, 36.5-38.0%, BioReagent, Molecular Biology
Sigma-Aldrich
6-苄氨基嘌呤, suitable for plant cell culture
Sigma-Aldrich
乙二胺四乙酸, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
乙二胺四乙酸 溶液, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
十二烷基硫酸钠, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, 20% in H2O
Sigma-Aldrich
乙二胺四乙酸 二钠盐 溶液, BioUltra, pH 8.0, ~0.5 M in H2O
Supelco
盐酸 溶液, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
蔗糖, ACS reagent
Sigma-Aldrich
3,3′,5,5′-四甲基联苯胺, ≥99%
Supelco
十二烷基硫酸钠, dust-free pellets, suitable for electrophoresis, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
乙二胺四乙酸, 99.995% trace metals basis
Sigma-Aldrich
乙二胺四乙酸, BioUltra, anhydrous, ≥99% (titration)