Merck
CN
  • Delivery of therapeutic protein for prevention of neurodegenerative changes: comparison of different CSF-delivery methods.

Delivery of therapeutic protein for prevention of neurodegenerative changes: comparison of different CSF-delivery methods.

Experimental neurology (2014-09-24)
Neil R Marshall, Sofia Hassiotis, Barbara King, Tina Rozaklis, Paul J Trim, Stephen K Duplock, Leanne K Winner, Helen Beard, Marten F Snel, Robert D Jolly, John J Hopwood, Kim M Hemsley
摘要

Injection of lysosomal enzyme into cisternal or ventricular cerebrospinal fluid (CSF) has been carried out in 11 lysosomal storage disorder models, with each study demonstrating reductions in primary substrate and secondary neuropathological changes, and several reports of improved neurological function. Whilst acute studies in mucopolysaccharidosis (MPS) type II mice revealed that intrathecally-delivered enzyme (into thoraco-lumbar CSF) accesses the brain, the impact of longer-term treatment of affected subjects via this route is unknown. This approach is presently being utilized to treat children with MPS types I, II and III. Our aim was to determine the efficacy of repeated intrathecal injection of recombinant human sulfamidase (rhSGSH) on pathological changes in the MPS IIIA dog brain. The outcomes were compared with those in dogs treated via intra-cisternal or ventricular routes. Control dogs received buffer or no treatment. Significant reductions in primary/secondary substrate levels in brain were observed in dogs treated via all routes, although the extent of the reduction differed regionally. Treatment via all CSF access points resulted in large reductions in microgliosis in superficial cerebral cortex, but only ventricular injection enabled amelioration in deep cerebral cortex. Formation of glutamic acid decarboxylase-positive axonal spheroids in deep cerebellar nuclei was prevented by treatment delivered via any route. Anti-rhSGSH antibodies in the sera of some dogs did not reduce therapeutic efficacy. Our data indicates the capacity of intra-spinal CSF-injected rhSGSH to circulate within CSF-filled spaces, penetrate into brain and mediate a significant reduction in substrate accumulation and secondary pathology in the MPS IIIA dog brain.

材料
货号
品牌
产品描述

Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
甲醇, suitable for HPLC, ≥99.9%
Sigma-Aldrich
四氢呋喃, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
乙腈, anhydrous, 99.8%
Sigma-Aldrich
四氢呋喃, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
四氢呋喃, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
甲酸, reagent grade, ≥95%
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
四氢呋喃, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
甲醇, HPLC Plus, ≥99.9%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
甲酸, ACS reagent, ≥96%
Sigma-Aldrich
乙腈, ACS reagent, ≥99.5%
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
盐酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
盐酸, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
乙腈, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
盐酸, 36.5-38.0%, BioReagent, for molecular biology
SAFC
氯化钠 溶液, 5 M