跳转至内容
Merck
CN
  • Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury.

Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury.

Experimental neurology (2015-01-07)
Wang-Xia Wang, Nishant P Visavadiya, Jignesh D Pandya, Peter T Nelson, Patrick G Sullivan, Joe E Springer
摘要

Traumatic brain injury (TBI) is a major cause of death and disability. However, the molecular events contributing to the pathogenesis are not well understood. Mitochondria serve as the powerhouse of cells, respond to cellular demands and stressors, and play an essential role in cell signaling, differentiation, and survival. There is clear evidence of compromised mitochondrial function following TBI; however, the underlying mechanisms and consequences are not clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally, and function as important mediators of neuronal development, synaptic plasticity, and neurodegeneration. Several miRNAs show altered expression following TBI; however, the relevance of mitochondria in these pathways is unknown. Here, we present evidence supporting the association of miRNA with hippocampal mitochondria, as well as changes in mitochondria-associated miRNA expression following a controlled cortical impact (CCI) injury in rats. Specifically, we found that the miRNA processing proteins Argonaute (AGO) and Dicer are present in mitochondria fractions from uninjured rat hippocampus, and immunoprecipitation of AGO associated miRNA from mitochondria suggests the presence of functional RNA-induced silencing complexes. Interestingly, RT-qPCR miRNA array studies revealed that a subset of miRNA is enriched in mitochondria relative to cytoplasm. At 12h following CCI, several miRNAs are significantly altered in hippocampal mitochondria and cytoplasm. In addition, levels of miR-155 and miR-223, both of which play a role in inflammatory processes, are significantly elevated in both cytoplasm and mitochondria. We propose that mitochondria-associated miRNAs may play an important role in regulating the response to TBI.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
2-丙醇, suitable for HPLC, 99.9%
Sigma-Aldrich
2-丙醇, ACS reagent, ≥99.5%
Sigma-Aldrich
十二烷基硫酸钠, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
2-丙醇, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
异丙醇, meets USP testing specifications
Sigma-Aldrich
2-丙醇, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
十二烷基硫酸钠, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
2-丙醇, anhydrous, 99.5%
Sigma-Aldrich
十二烷基硫酸钠, ACS reagent, ≥99.0%
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, Molecular Biology, 10% in H2O
Sigma-Aldrich
2-丙醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
脱氧胆酸钠, BioXtra, ≥98.0% (dry matter, NT)
Sigma-Aldrich
脱氧胆酸钠, ≥97% (titration)
Sigma-Aldrich
十二烷基硫酸钠, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
2-丙醇, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
乙二胺四乙酸, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
乙二醇-双(2-氨基乙醚)-N,N,N′,N′-四乙酸, Molecular Biology, ≥97.0%
Sigma-Aldrich
乙二胺四乙酸, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
异丙醇, ≥99.7%, FCC, FG
Sigma-Aldrich
乙二胺四乙酸 溶液, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
十二烷基硫酸钠, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
2-丙醇, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, 20% in H2O
Sigma-Aldrich
乙二胺四乙酸 二钠盐 溶液, BioUltra, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
2-丙醇, BioUltra, Molecular Biology, ≥99.5% (GC)
Supelco
十二烷基硫酸钠, dust-free pellets, suitable for electrophoresis, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
乙二胺四乙酸, 99.995% trace metals basis
Sigma-Aldrich
乙二胺四乙酸, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
单克隆抗 β-肌动蛋白抗体 小鼠抗, clone AC-74, ascites fluid
Supelco
十二烷基硫酸钠, suitable for ion pair chromatography, LiChropur, ≥99.0%