Merck
CN
  • Stability characterization and appearance of particulates in a lyophilized formulation of a model peptide hormone-human secretin.

Stability characterization and appearance of particulates in a lyophilized formulation of a model peptide hormone-human secretin.

International journal of pharmaceutics (2015-02-01)
Charudharshini Srinivasan, Akhtar Siddiqui, Maxwell Korang-Yeboah, Mansoor A Khan
摘要

Drug shortages and recalls are often caused due to particulate growth in parenteral products and can have serious clinical implications. Root cause analysis of such recalls and shortages may arise due to insufficient understanding of process, formulations issues and environmental effects than often reported filtration and inadequate personnel training. Therefore, the goal of this study was to use a model peptide hormone, secretin that is currently under drug shortage, and investigate the effect of excipients on the lyophilized secretin formulation and evaluate the effect of storage and excursion temperatures. Lyophilized formulation was assayed for secretin by reverse phase HPLC. Solid state characteristics of lyophilized formulation were determined by X-ray powder diffraction (XRPD), thermal and spectroscopic methods. Dynamic light scattering (DLS) was used to detect particulates in the formulation after reconstitution. To assess the environmental impact, the lyophilized samples were stored at -20°C, 4°C, 25°C and 25°C/60%RH and analyzed at time 0, 1, 4, and 8 weeks. HPLC analyses exhibited a decrease in secretin concentration by 8 week (20-27% fold decrease). Visual observation and DLS showed particulates and increased reconstitution time (e.g., at 25°C/60%RH, particle size of ∼390 nm at day 0 to >2 μm as early as week 1; reconstitution time of ∼20s at day 0 to ∼67s at week 8). XRPD, thermal and spectroscopic methods demonstrated polymorphic transitions of mannitol and increased crystallinity in the lyophilized formulations with time. These studies potentially address the effect of product excursions outside the proposed label storage conditions which is -20°C for secretin formulation and this is the first time it has been investigated. These observations indicate that both environmental factor and excipient may have an impact on the stability of secretin formulation and appearance of particles in the product.

材料
货号
品牌
产品描述

Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
D -甘露醇, ≥98% (GC)
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 5 M
Supelco
甘露醇, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
SAFC
氯化钠 溶液, 5 M
Supelco
氯化钠, reference material for titrimetry, certified by BAM, ≥99.5%
Sigma-Aldrich
D -甘露醇, ACS reagent
Supelco
氯化钠, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
D -甘露醇, BioXtra, ≥98% (HPLC)
Sigma-Aldrich
D -甘露醇, ≥98% (GC), suitable for plant cell culture
Sigma-Aldrich
D -甘露醇, meets EP, FCC, USP testing specifications
Sigma-Aldrich
氯化钠 溶液, 0.85%
Sigma-Aldrich
氯化钠, tested according to Ph. Eur.
甘露醇, European Pharmacopoeia (EP) Reference Standard
USP
甘露醇, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Millipore
D -甘露醇, ACS reagent, suitable for microbiology, ≥99.0%
Sigma-Aldrich
D -甘露醇, BioUltra, ≥99.0% (sum of enantiomers, HPLC)
Sigma-Aldrich
DL-半胱氨酸, technical grade
Sigma-Aldrich
D -甘露醇, tested according to Ph. Eur.
Sigma-Aldrich
氯化钠, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
氯化钠, random crystals, optical grade, 99.9% trace metals basis