跳转至内容
Merck
CN
  • Increased mesocorticolimbic dopamine during acute and repeated social defeat stress: modulation by corticotropin releasing factor receptors in the ventral tegmental area.

Increased mesocorticolimbic dopamine during acute and repeated social defeat stress: modulation by corticotropin releasing factor receptors in the ventral tegmental area.

Psychopharmacology (2015-09-26)
Elizabeth N Holly, Joseph F DeBold, Klaus A Miczek
摘要

Stress activates a subset of dopamine neurons in the ventral tegmental area (VTA), increasing extracellular dopamine in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (NAcSh). The stress neuropeptide corticotropin releasing factor (CRF) and its receptors (CRF-R1 and CRF-R2) are located within the VTA and directly and indirectly influence dopaminergic activity. However, it has yet to be shown in vivo whether VTA CRF receptor activation is necessary for acute and repeated stress-induced dopamine efflux. With intra-VTA CRF-R1 and CRF-R2 antagonism during social defeat, we assessed whether blockade of these receptors could prevent stress-induced dopamine increases in the mPFC and NAcSh using in vivo microdialysis. Rats were microinjected with a CRF-R1 or CRF-R2 antagonist into the VTA prior to social defeat stress on days 1, 4, 7, and 10. In vivo microdialysis for dopamine in the mPFC and NAcSh was performed during stress on days 1 and 10. During the first social defeat, extracellular dopamine was significantly elevated in both the mPFC and NAcSh, and this increase in the NAcSh was blocked by intra-VTA CRF-R2, but not CRF-R1, antagonism. During the final social defeat, the dopaminergic increase was neither sensitized nor habituated in the mPFC and NAcSh, and intra-VTA CRF-R2, but not CRF-R1, antagonism prevented the dopamine increase in both brain regions. These findings show that CRF-R2 in the VTA is necessary for acute and repeated stress-induced dopamine efflux in the NAcSh, but is only recruited into mPFC-projecting dopamine neurons with repeated stress exposure.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
氯化钠, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
L -抗坏血酸, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
氯化钙 溶液, BioUltra, Molecular Biology, ~1 M in H2O
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
L -抗坏血酸, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
L -抗坏血酸, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L -抗坏血酸, 99%
Sigma-Aldrich
L -抗坏血酸, reagent grade, crystalline
Sigma-Aldrich
氯化钙, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Sigma-Aldrich
氯化钠 溶液, 5 M
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
L -抗坏血酸, ACS reagent, ≥99%
Sigma-Aldrich
氯化钠, BioUltra, Molecular Biology, ≥99.5% (AT)
Supelco
L -抗坏血酸, analytical standard
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠 溶液, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
L -抗坏血酸, meets USP testing specifications
Sigma-Aldrich
氯化钙, powder, 99.99% trace metals basis
Sigma-Aldrich
L -抗坏血酸, reagent grade
Sigma-Aldrich
氯化钙
Sigma-Aldrich
L -抗坏血酸, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
L -抗坏血酸, FCC, FG
Sigma-Aldrich
氯化钙, AnhydroBeads, −10 mesh, ≥99.9% trace metals basis
Sigma-Aldrich
氯化钠 溶液, 0.85%
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
L -抗坏血酸, BioUltra, ≥99.5% (RT)