Merck
CN
  • Carbachol-induced colonic mucus formation requires transport via NKCC1, K⁺ channels and CFTR.

Carbachol-induced colonic mucus formation requires transport via NKCC1, K⁺ channels and CFTR.

Pflugers Archiv : European journal of physiology (2014-08-21)
Jenny K Gustafsson, Sara K Lindén, Ala H Alwan, Bob J Scholte, Gunnar C Hansson, Henrik Sjövall
摘要

The colonic mucosa protects itself from the luminal content by secreting mucus that keeps the bacteria at a distance from the epithelium. For this barrier to be effective, the mucus has to be constantly replenished which involves exocytosis and expansion of the secreted mucins. Mechanisms involved in regulation of mucus exocytosis and expansion are poorly understood, and the aim of this study was to investigate whether epithelial anion secretion regulates mucus formation in the colon. The muscarinic agonist carbachol was used to induce parallel secretion of anions and mucus, and by using established inhibitors of ion transport, we studied how inhibition of epithelial transport affected mucus formation in mouse colon. Anion secretion and mucin exocytosis were measured by changes in membrane current and epithelial capacitance, respectively. Mucus thickness measurements were used to determine the carbachol effect on mucus growth. The results showed that the carbachol-induced increase in membrane current was dependent on NKCC1 co-transport, basolateral K(+) channels and Cftr activity. In contrast, the carbachol-induced increase in capacitance was partially dependent on NKCC1 and K(+) channel activity, but did not require Cftr activity. Carbachol also induced an increase in mucus thickness that was inhibited by the NKCC1 blocker bumetanide. However, mice that lacked a functional Cftr channel did not respond to carbachol with an increase in mucus thickness, suggesting that carbachol-induced mucin expansion requires Cftr channel activity. In conclusion, these findings suggest that colonic epithelial transport regulates mucus formation by affecting both exocytosis and expansion of the mucin molecules.

材料
货号
品牌
产品描述

Sigma-Aldrich
纯乙醇, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
碳酸氢钠, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
D -(+)-葡萄糖, ≥99.5% (GC)
Sigma-Aldrich
D -(+)-葡萄糖, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氯化钙 溶液, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
磷酸钾 一元, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
D -甘露醇, ≥98% (GC)
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
葡萄糖, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
D -(+)-葡萄糖, ACS reagent
Sigma-Aldrich
磷酸钾 一元, ReagentPlus®
Sigma-Aldrich
纯乙醇, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
D -(+)-葡萄糖, ≥99.5% (GC), BioXtra
Sigma-Aldrich
氯化钙, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
纯乙醇, 190 proof, meets USP testing specifications
Sigma-Aldrich
D -甘露醇, ACS reagent
Sigma-Aldrich
诺考达唑, ≥99% (TLC), powder
Sigma-Aldrich
硫酸镁, BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
前列腺素E2, synthetic, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
碳酸氢钠, BioXtra, 99.5-100.5%
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
磷酸钾 一元, for molecular biology, ≥98.0%
Sigma-Aldrich
氯化钠, 99.999% trace metals basis