Merck
CN
  • Comprehensive In Vitro Toxicity Testing of a Panel of Representative Oxide Nanomaterials: First Steps towards an Intelligent Testing Strategy.

Comprehensive In Vitro Toxicity Testing of a Panel of Representative Oxide Nanomaterials: First Steps towards an Intelligent Testing Strategy.

PloS one (2015-05-23)
Lucian Farcal, Fernando Torres Andón, Luisana Di Cristo, Bianca Maria Rotoli, Ovidio Bussolati, Enrico Bergamaschi, Agnieszka Mech, Nanna B Hartmann, Kirsten Rasmussen, Juan Riego-Sintes, Jessica Ponti, Agnieszka Kinsner-Ovaskainen, François Rossi, Agnes Oomen, Peter Bos, Rui Chen, Ru Bai, Chunying Chen, Louise Rocks, Norma Fulton, Bryony Ross, Gary Hutchison, Lang Tran, Sarah Mues, Rainer Ossig, Jürgen Schnekenburger, Luisa Campagnolo, Lucia Vecchione, Antonio Pietroiusti, Bengt Fadeel
摘要

Nanomaterials (NMs) display many unique and useful physico-chemical properties. However, reliable approaches are needed for risk assessment of NMs. The present study was performed in the FP7-MARINA project, with the objective to identify and evaluate in vitro test methods for toxicity assessment in order to facilitate the development of an intelligent testing strategy (ITS). Six representative oxide NMs provided by the EC-JRC Nanomaterials Repository were tested in nine laboratories. The in vitro toxicity of NMs was evaluated in 12 cellular models representing 6 different target organs/systems (immune system, respiratory system, gastrointestinal system, reproductive organs, kidney and embryonic tissues). The toxicity assessment was conducted using 10 different assays for cytotoxicity, embryotoxicity, epithelial integrity, cytokine secretion and oxidative stress. Thorough physico-chemical characterization was performed for all tested NMs. Commercially relevant NMs with different physico-chemical properties were selected: two TiO2 NMs with different surface chemistry - hydrophilic (NM-103) and hydrophobic (NM-104), two forms of ZnO - uncoated (NM-110) and coated with triethoxycapryl silane (NM-111) and two SiO2 NMs produced by two different manufacturing techniques - precipitated (NM-200) and pyrogenic (NM-203). Cell specific toxicity effects of all NMs were observed; macrophages were the most sensitive cell type after short-term exposures (24-72h) (ZnO>SiO2>TiO2). Longer term exposure (7 to 21 days) significantly affected the cell barrier integrity in the presence of ZnO, but not TiO2 and SiO2, while the embryonic stem cell test (EST) classified the TiO2 NMs as potentially 'weak-embryotoxic' and ZnO and SiO2 NMs as 'non-embryotoxic'. A hazard ranking could be established for the representative NMs tested (ZnO NM-110 > ZnO NM-111 > SiO2 NM-203 > SiO2 NM-200 > TiO2 NM-104 > TiO2 NM-103). This ranking was different in the case of embryonic tissues, for which TiO2 displayed higher toxicity compared with ZnO and SiO2. Importantly, the in vitro methodology applied could identify cell- and NM-specific responses, with a low variability observed between different test assays. Overall, this testing approach, based on a battery of cellular systems and test assays, complemented by an exhaustive physico-chemical characterization of NMs, could be deployed for the development of an ITS suitable for risk assessment of NMs. This study also provides a rich source of data for modeling of NM effects.

材料
货号
品牌
产品描述

Sigma-Aldrich
Trizma ® 碱, Primary Standard and Buffer, ≥99.9% (titration), crystalline
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Trizma ® 碱, BioPerformance Certified, meets EP, USP testing specifications, suitable for cell culture, ≥99.9% (titration)
Sigma-Aldrich
D -(+)-葡萄糖, ≥99.5% (GC)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
D -(+)-葡萄糖, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
2-巯基乙醇, for molecular biology, suitable for electrophoresis, suitable for cell culture, BioReagent, 99% (GC/titration)
Sigma-Aldrich
2-巯基乙醇, ≥99.0%
Sigma-Aldrich
脂多糖 来源于大肠杆菌 0111:B4, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
三(羟甲基)氨基甲烷, ACS reagent, ≥99.8%
Sigma-Aldrich
丙酮酸钠, ReagentPlus®, ≥99%
Sigma-Aldrich
葡萄糖, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
D -(+)-葡萄糖, ACS reagent
Sigma-Aldrich
L-谷氨酰胺, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸 水合物, ≥96.5% (HPLC), ≥96.5% (spectrophotometric assay), from yeast
Sigma-Aldrich
D -(+)-葡萄糖, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sigma 7-9®®, ≥99% (titration), crystalline
Sigma-Aldrich
2-巯基乙醇, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
丙酮酸钠, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
L-谷氨酰胺, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Trizma ® 碱, ≥99.0% (T)
Sigma-Aldrich
Trizma ® 碱, BioUltra, for molecular biology, ≥99.8% (T)
Sigma-Aldrich
HEPES缓冲溶液, 1 M in H2O
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
β-烟酰胺腺嘌呤二核苷酸 水合物, ≥99%
Sigma-Aldrich
缓血酸胺, meets USP testing specifications
Sigma-Aldrich
吩嗪硫酸甲酯, ≥90% (UV)
SAFC
L-谷氨酰胺
SAFC
HEPES
Sigma-Aldrich
Trizma ® 碱, BioXtra, pH 10.5-12.0 (1 M in H2O), ≥99.9% (titration)