Merck
CN
  • Functional characterization of two acyltransferases from Populus trichocarpa capable of synthesizing benzyl benzoate and salicyl benzoate, potential intermediates in salicinoid phenolic glycoside biosynthesis.

Functional characterization of two acyltransferases from Populus trichocarpa capable of synthesizing benzyl benzoate and salicyl benzoate, potential intermediates in salicinoid phenolic glycoside biosynthesis.

Phytochemistry (2015-01-07)
Russell J Chedgy, Tobias G Köllner, C Peter Constabel
摘要

Salicinoids are phenolic glycosides (PGs) characteristic of the Salicaceae and are known defenses against insect herbivory. Common examples are salicin, salicortin, tremuloidin, and tremulacin, which accumulate to high concentrations in the leaves and bark of willows and poplars. Although their biosynthetic pathway is not known, recent work has suggested that benzyl benzoate may be a potential biosynthetic intermediate. Two candidate genes, named PtACT47 and PtACT49, encoding BAHD-type acyl transferases were identified and are predicted to produce such benzylated secondary metabolites. Herein described are the cDNA cloning, heterologous expression and in vitro functional characterization of these two BAHD acyltransferases. Recombinant PtACT47 exhibited low substrate selectivity and could utilize acetyl-CoA, benzoyl-CoA, and cinnamoyl-CoA as acyl donors with a variety of alcohols as acyl acceptors. This enzyme showed the greatest Km/Kcat ratio (45.8 nM(-1) s(-1)) and lowest Km values (45.1 μM) with benzoyl-CoA and salicyl alcohol, and was named benzoyl-CoA: salicyl alcohol O-benzoyltransferase (PtSABT). Recombinant PtACT49 utilized a narrower range of substrates, including benzoyl-CoA and acetyl-CoA and a limited number of alcohols. Its highest Km/Kcat (31.8 nM(-1) s(-1)) and lowest Km (55.3 μM) were observed for benzoyl-CoA and benzyl alcohol, and it was named benzoyl-CoA: benzyl alcohol O-benzoyltransferase (PtBEBT). Both enzymes were also capable of synthesizing plant volatile alcohol esters, such as hexenyl benzoate, at trace levels. Although the activities demonstrated are consistent with roles in salicinoid biosynthesis, direct tests of this hypothesis using transgenic poplar must still be performed.

材料
货号
品牌
产品描述

Sigma-Aldrich
正己烷, anhydrous, 95%
Sigma-Aldrich
苯甲醇, anhydrous, 99.8%
Sigma-Aldrich
芳樟醇, 97%
Sigma-Aldrich
苯甲酸苄酯, ReagentPlus®, ≥99.0%
Sigma-Aldrich
乙腈
Sigma-Aldrich
3,3′-二氨基联苯胺 四盐酸盐, tablet, 10 mg substrate per tablet
Sigma-Aldrich
肉桂醇, 98%
Sigma-Aldrich
乙酸苄酯, ≥99%
Sigma-Aldrich
芳樟醇, ≥97%, FCC, FG
Sigma-Aldrich
2-萘乙酮, 99%
Sigma-Aldrich
2-羟基苄醇, 99%
Sigma-Aldrich
顺式 -3-己烯-1-醇, natural, >98%, FCC, FG
Sigma-Aldrich
苯甲酸苄酯, ≥99%, FCC, FG
Sigma-Aldrich
松柏醇, 98%
Sigma-Aldrich
顺式 -3-己烯-1-醇, 98%
Sigma-Aldrich
苯甲醇, ≥99%, FCC, FG
Sigma-Aldrich
苯甲醇, natural, ≥98%, FG
Sigma-Aldrich
乙腈
Sigma-Aldrich
乙酸苄酯, ≥99%, FCC, FG
Sigma-Aldrich
苯甲酸苄酯, natural, ≥99%, FG
Sigma-Aldrich
乙酸苄酯, natural, ≥99%, FCC, FG
Sigma-Aldrich
(-)-芳樟醇, ≥95.0% (sum of enantiomers, GC)
Sigma-Aldrich
肉桂醇, ≥98%, FG
Sigma-Aldrich
乙腈
Sigma-Aldrich
甲基β-萘酮, ≥99%, FCC, FG
Sigma-Aldrich
苯甲酸苄酯, meets USP testing specifications
Sigma-Aldrich
乙腈
Sigma-Aldrich
乙腈