Merck
CN
  • Mitochondrial transcription factor A (Tfam) is a pro-inflammatory extracellular signaling molecule recognized by brain microglia.

Mitochondrial transcription factor A (Tfam) is a pro-inflammatory extracellular signaling molecule recognized by brain microglia.

Molecular and cellular neurosciences (2014-04-29)
Jonathan P Little, Svetlana Simtchouk, Stephanie M Schindler, Erika B Villanueva, Nichole E Gill, Douglas G Walker, Kirsten R Wolthers, Andis Klegeris
摘要

Microglia represent mononuclear phagocytes in the brain and perform immune surveillance, recognizing a number of signaling molecules released from surrounding cells in both healthy and pathological situations. The microglia interact with several damage-associated molecular pattern molecules (DAMPs) and recent data indicate that mitochondrial transcription factor A (Tfam) could act as a specific DAMP in peripheral tissues. This study tested the hypothesis that extracellular Tfam induces pro-inflammatory and cytotoxic responses of the microglia. Three different types of human mononuclear phagocytes were used to model human microglia: human peripheral blood monocytes from healthy donors, human THP-1 monocytic cells, and human primary microglia obtained from autopsy samples. When combined with interferon (IFN)-γ, recombinant human Tfam (rhTfam) induced secretions that were toxic to human SH-SY5Y neuroblastoma cells in all three models. Similar cytotoxic responses were observed when THP-1 cells and human microglia were exposed to human mitochondrial proteins in the presence of IFN-γ. rhTfam alone induced expression of pro-inflammatory cytokines interleukin (IL)-1β, IL-6 and IL-8 by THP-1 cells. This induction was further enhanced in the presence of IFN-γ. Upregulated secretion of IL-6 in response to rhTfam plus IFN-γ was confirmed in primary human microglia. Use of specific inhibitors showed that the rhTfam-induced cytotoxicity of human THP-1 cells depended partially on activation of c-Jun N-terminal kinase (JNK), but not p38 mitogen-activated protein kinase (MAPK). Overall, our data support the hypothesis that, in the human brain, Tfam could act as an intercellular signaling molecule that is recognized by the microglia to cause pro-inflammatory and cytotoxic responses.

材料
货号
品牌
产品描述

Sigma-Aldrich
二甲基亚砜, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
二甲基亚砜, for molecular biology
Sigma-Aldrich
二甲基亚砜, anhydrous, ≥99.9%
Sigma-Aldrich
二甲基亚砜, ACS reagent, ≥99.9%
Sigma-Aldrich
二甲基亚砜, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
二甲基亚砜, suitable for HPLC, ≥99.7%
Sigma-Aldrich
L -还原型谷胱甘肽, ≥98.0%
Sigma-Aldrich
二甲基亚砜, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
二甲基亚砜, ReagentPlus®, ≥99.5%
Sigma-Aldrich
乙二胺四乙酸, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
乙二胺四乙酸 二钠盐 溶液, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
二甲基亚砜, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
二甲基亚砜, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
L -还原型谷胱甘肽, suitable for cell culture, BioReagent, ≥98.0%, powder
Sigma-Aldrich
二甲基亚砜, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
乙二胺四乙酸, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
乙二胺四乙酸 溶液, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
乙二胺四乙酸, purified grade, ≥98.5%, powder
Supelco
谷胱甘肽, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
乙二胺四乙酸, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
乙二胺四乙酸, 99.995% trace metals basis
Sigma-Aldrich
L -还原型谷胱甘肽, BioXtra, ≥98.0%
Supelco
二甲基亚砜, analytical standard
Sigma-Aldrich
二甲基亚砜, PCR Reagent
Sigma-Aldrich
二甲基亚砜, puriss. p.a., dried, ≤0.02% water
谷胱甘肽, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
乙二胺四乙酸, ≥98.0% (KT)
Sigma-Aldrich
乙二胺四乙酸, BioUltra, ≥99.0% (KT)
USP
二甲基亚砜, United States Pharmacopeia (USP) Reference Standard
Supelco
二甲基亚砜, for inorganic trace analysis, ≥99.99995% (metals basis)