Merck
CN
  • The unique serine/threonine phosphatase from the minimal bacterium Mycoplasma synoviae: biochemical characterization and metal dependence.

The unique serine/threonine phosphatase from the minimal bacterium Mycoplasma synoviae: biochemical characterization and metal dependence.

Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry (2014-11-06)
Angela C O Menegatti, Javier Vernal, Hernán Terenzi
摘要

Serine/threonine protein phosphatases have been described in many pathogenic bacteria as essential enzymes involved in phosphorylation-dependent signal transduction pathways and frequently associated with the virulence of these organisms. An inspection of Mycoplasma synoviae genome revealed the presence of a gene (prpC) encoding a putative protein phosphatase of the protein phosphatase 2C (PP2C) subfamily. Here, we report a complete biochemical characterization of M. synoviae phosphatase (PrpC) and the particular role of metal ions in the structure-function relationship of this enzyme. PrpC amino acid sequence analysis revealed that all the residues involved in the dinuclear metal center and the putative third metal ion-coordinating residues, conserved in PP2C phosphatases, are present in PrpC. PrpC is a monomeric protein able to dephosphorylate phospho-substrates with Mn(2+) ions' dependence. Thermal stability analysis demonstrated the enzyme stability at mild temperatures and the influence of Mn(2+) ions in this property. Mass spectrometry analysis suggested that three metal ions bind to PrpC, two of which with an apparent high-affinity constant. Mutational analysis of the putative third metal-coordinating residues, Asp122 and Arg164, revealed that these variants exhibited a weaker binding of manganese ions, and that both mutations affected PrpC phosphatase activity. According to these results, PrpC is a metal-dependent protein phosphatase member with an improved stability in the holo form and with Asp122, possibly implicated in the third metal-binding site, essential to catalytic activity.

材料
货号
品牌
产品描述

Sigma-Aldrich
甘油, for molecular biology, ≥99.0%
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
甘油, ACS reagent, ≥99.5%
Sigma-Aldrich
甘油, ≥99.5%
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
甘油, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
DL-二硫代苏糖醇 溶液, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
碳酸氢铵, ReagentPlus®, ≥99.0%
Supelco
DL-二硫代苏糖醇 溶液, 1 M in H2O
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
碳酸氢铵, BioUltra, ≥99.5% (T)
Supelco
甘油, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
甘油, BioXtra, ≥99% (GC)
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
L-苏氨酸, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
甘油, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
甘油 溶液, 83.5-89.5% (T)
Supelco
氯化钠, reference material for titrimetry, certified by BAM, ≥99.5%
Supelco
氯化钠, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
甘油, meets USP testing specifications
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
USP
甘油, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
甘油, FCC, FG
Sigma-Aldrich
甘油, puriss., anhydrous, 99.0-101.0% (alkalimetric)
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
甘油, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)