跳转至内容
Merck
CN
  • Optimal attenuation of experimental autoimmune encephalomyelitis by intravenous immunoglobulin requires an intact interleukin-11 receptor.

Optimal attenuation of experimental autoimmune encephalomyelitis by intravenous immunoglobulin requires an intact interleukin-11 receptor.

PloS one (2014-08-01)
Carlyn A Figueiredo, Paulina C Drohomyrecky, Stephen D S McCarthy, Danila Leontyev, Xue-Zhong Ma, Donald R Branch, Shannon E Dunn
摘要

Intravenous immunoglobulin (IVIg) has been used to treat a variety of autoimmune disorders including multiple sclerosis (MS); however its mechanism of action remains elusive. Recent work has shown that interleukin-11 (IL-11) mRNAs are upregulated by IVIg in MS patient T cells. Both IVIg and IL-11 have been shown to ameliorate experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The objective of this study was to determine whether the protective effects of IVIg in EAE occur through an IL-11 and IL-11 receptor (IL-11R)-dependent mechanism. We measured IL-11 in the circulation of mice and IL-11 mRNA expression in various organs after IVIg treatment. We then followed with EAE studies to test the efficacy of IVIg in wild-type (WT) mice and in mice deficient for the IL-11 receptor (IL-11Rα-/-). Furthermore, we evaluated myelin-specific Th1 and Th17 responses and assessed spinal cord inflammation and demyelination in WT and IL-11Rα-/- mice, with and without IVIg treatment. We also examined the direct effects of mouse recombinant IL-11 on the production of IL-17 by lymph node mononuclear cells. IVIg treatment induced a dramatic surge (>1000-fold increase) in the levels of IL-11 in the circulation and a prominent increase of IL-11 mRNA expression in the liver. Furthermore, we found that IL-11Rα-/- mice, unlike WT mice, although initially protected, were resistant to full protection by IVIg during EAE and developed disease with a similar incidence and severity as control-treated IL-11Rα-/- mice, despite initially showing protection. We observed that Th17 cytokine production by myelin-reactive T cells in the draining lymph nodes was unaffected by IVIg in IL-11Rα-/- mice, yet was downregulated in WT mice. Finally, IL-11 was shown to directly inhibit IL-17 production of lymph node cells in culture. These results implicate IL-11 as an important immune effector of IVIg in the prevention of Th17-mediated autoimmune inflammation during EAE.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
2-巯基乙醇, Molecular Biology, suitable for electrophoresis, suitable for cell culture, BioReagent, 99% (GC/titration)
Sigma-Aldrich
2-巯基乙醇, ≥99.0%
Sigma-Aldrich
L-谷氨酰胺, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
丙酮酸钠, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
L-谷氨酰胺, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
2-巯基乙醇, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
丙酮酸钠, ReagentPlus®, ≥99%
SAFC
L-谷氨酰胺
Sigma-Aldrich
丙酮酸钠, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
L-谷氨酰胺, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
丙酮酸钠, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
L-谷氨酰胺, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-谷氨酰胺
Sigma-Aldrich
丙酮酸钠, BioXtra, ≥99%
Supelco
2-巯基乙醇, derivatization grade (HPLC), LiChropur, ≥99.0% (GC)
Supelco
L-谷氨酰胺, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
丙酮酸钠, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Supelco
L-谷氨酰胺, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
L-谷氨酰胺, Vetec, reagent grade, ≥99%
Sigma-Aldrich
丙酮酸钠, Vetec, reagent grade, 98%