跳转至内容
Merck
CN
  • Irradiation of the Juvenile Brain Provokes a Shift from Long-Term Potentiation to Long-Term Depression.

Irradiation of the Juvenile Brain Provokes a Shift from Long-Term Potentiation to Long-Term Depression.

Developmental neuroscience (2015-06-06)
Giulia Zanni, Kai Zhou, Ilse Riebe, Cuicui Xie, Changlian Zhu, Eric Hanse, Klas Blomgren
摘要

Radiotherapy is common in the treatment of brain tumors in children but often causes deleterious, late-appearing sequelae, including cognitive decline. This is thought to be caused, at least partly, by the suppression of hippocampal neurogenesis. However, the changes in neuronal network properties in the dentate gyrus (DG) following the irradiation of the young, growing brain are still poorly understood. We characterized the long-lasting effects of irradiation on the electrophysiological properties of the DG after a single dose of 6-Gy whole-brain irradiation on postnatal day 11 in male Wistar rats. The assessment of the basal excitatory transmission in the medial perforant pathway (MPP) by an examination of the field excitatory postsynaptic potential/volley ratio showed an increase of the synaptic efficacy per axon in irradiated animals compared to sham controls. The paired-pulse ratio at the MPP granule cell synapses was not affected by irradiation, suggesting that the release probability of neurotransmitters was not altered. Surprisingly, the induction of long-term synaptic plasticity in the DG by applying 4 trains of high-frequency stimulation provoked a shift from long-term potentiation (LTP) to long-term depression (LTD) in irradiated animals compared to sham controls. The morphological changes consisted in a virtually complete ablation of neurogenesis following irradiation, as judged by doublecortin immunostaining, while the inhibitory network of parvalbumin interneurons was intact. These data suggest that the irradiation of the juvenile brain caused permanent changes in synaptic plasticity that would seem consistent with an impairment of declarative learning. Unlike in our previous study in mice, lithium treatment did unfortunately not ameliorate any of the studied parameters. For the first time, we show that the effects of cranial irradiation on long-term synaptic plasticity is different in the juvenile compared with the adult brain, such that while irradiation of the adult brain will only cause a reduction in LTP, irradiation of the juvenile brain goes further and causes LTD. Although the mechanisms underlying the synaptic alterations need to be elucidated, these findings provide a better understanding of the effects of irradiation in the developing brain and the cognitive deficits observed in young patients who have been subjected to cranial radiotherapy. © 2015 S. Karger AG, Basel.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
甘油, Molecular Biology, ≥99.0%
Sigma-Aldrich
氯化钠, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
甘油, ≥99.5%
Sigma-Aldrich
甘油 溶液, 83.5-89.5% (T)
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
甘油, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
氯化锂 溶液, 8 M, Molecular Biology, ≥99%
Sigma-Aldrich
甘油, BioUltra, Molecular Biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
氯化锂, Molecular Biology, ≥99%
Sigma-Aldrich
甘油, BioXtra, ≥99% (GC)
Sigma-Aldrich
氯化锂, powder, ≥99.98% trace metals basis
Sigma-Aldrich
氯化钠, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠 溶液, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
甘油, FCC, FG
Sigma-Aldrich
甘油, meets USP testing specifications
Sigma-Aldrich
氯化钠 溶液, 0.85%
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
氯化锂, BioXtra, ≥99.0% (titration)
Sigma-Aldrich
氯化锂, BioUltra, Molecular Biology, anhydrous, ≥99.0% (AT)
Sigma-Aldrich
氯化锂, AnhydroBeads, −10 mesh, 99.998% trace metals basis
Sigma-Aldrich
氯化钠, tablet
Sigma-Aldrich
氯化钠-35Cl, 99 atom % 35Cl
Sigma-Aldrich
氯化钠, random crystals, 99.9% trace metals basis