跳转至内容
Merck
CN

Characteristics of the low density corneal endothelial monolayer.

Experimental eye research (2013-07-09)
Jorawer S Singh, Thomas A Haroldson, Sangita P Patel
摘要

Corneal endothelial cells form a leaky barrier on the posterior surface of the cornea, allowing influx of nutrient-carrying aqueous humor through the paracellular space and efflux of excess fluid. Corneal edema arises when the density of these non-proliferative endothelial cells declines from endothelial disease or intraocular surgery. The cellular changes occurring at low densities are ill-defined. We therefore investigated the paracellular pathway of corneal endothelial cell monolayers of varying density to determine alterations occurring in paracellular permeability and monolayer morphology. Primary cultures of bovine corneal endothelial cells (BCECs) were passaged onto permeable supports under varying culture conditions to obtain confluent monolayers of <1000, 1000-1999 and >2000 cells/mm(2). Culture growth was monitored by transendothelial electrical resistance measurements. Diffusional permeability to sodium fluorescein, FITC-dextran MW 4000 or FITC-dextran MW 20,000 was measured. Confluent cultures were also analyzed by immunofluorescence localization of the tight junction protein ZO-1 and by transmission electron microscopy. For comparison, we evaluated ZO-1 for low and high density human corneal endothelium. Our results showed that all BCEC cultures grew to the same final transendothelial electrical resistance regardless of final density. In the diffusional permeability assay, permeability increased significantly only for the smallest tracer molecule (sodium fluorescein) in the lowest density monolayers (<1000 cells/mm(2)). ZO-1 immunofluorescence distinctly localized to intercellular junctions in high density BCEC cultures but had more diffuse localization at lower densities. Transmission electron microscopy imaging revealed cells with thinner cross-sectional profiles and longer overlapping intercellular processes at low density relative to high density cultures. Low density human corneal endothelium lacked the diffuse ZO-1 distribution seen in BCECs. Our data supports the hypothesis that barrier integrity is the primary function disrupted in low density corneal endothelial monolayers and contradicts the idea of a linear decline in barrier function with decreasing cell density.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
葡聚糖 来源于明串珠菌 属, Mr ~70,000
Sigma-Aldrich
葡聚糖 来源于明串珠菌 属, Mr ~40,000
Sigma-Aldrich
葡聚糖 来源于明串珠菌 属, Mr 450,000-650,000
Sigma-Aldrich
荧光素 5(6)-异硫氰酸酯, BioReagent, suitable for fluorescence, mixture of 2 components, ≥90% (HPLC)
Sigma-Aldrich
荧光素 钠盐, BioReagent, suitable for fluorescence
Sigma-Aldrich
葡聚糖 来源于明串珠菌 属, Mr ~6,000
Sigma-Aldrich
异硫氰酸荧光素-葡聚糖, average mol wt 2,000,000
Sigma-Aldrich
葡聚糖 来源于肠系膜明串珠菌, average mol wt 1,500,000-2,800,000
Sigma-Aldrich
荧光素 钠盐, used as fluorescent tracer
Sigma-Aldrich
葡聚糖 来源于肠系膜明串珠菌, average mol wt 35,000-45,000
Sigma-Aldrich
葡聚糖 来源于肠系膜明串珠菌, average mol wt 9,000-11,000
Sigma-Aldrich
葡聚糖 来源于肠系膜明串珠菌, average mol wt 60,000-76,000
Sigma-Aldrich
葡聚糖 来源于明串珠菌 属, Mr ~100,000
Supelco
右旋糖酐, analytical standard, 25,000
Sigma-Aldrich
葡聚糖 来源于肠系膜明串珠菌, average mol wt 150,000
Supelco
葡聚糖 来源于肠系膜明串珠菌, analytical standard, suitable for gel permeation chromatography (GPC), Mw 670,000
Supelco
右旋糖酐, analytical standard, 5,000
Sigma-Aldrich
荧光素 5(6)-异硫氰酸酯, ≥90% (HPLC)
Sigma-Aldrich
荧光素 钠盐, p.a.
Supelco
右旋糖酐, analytical standard, suitable for gel permeation chromatography (GPC), Set Mp 1,000-400,000
Sigma-Aldrich
荧光素异硫氰酸酯异构体I, ≥97.5% (HPLC)
Supelco
右旋糖酐, analytical standard, 670,000
Supelco
右旋糖酐, analytical standard, 150,000
Supelco
右旋糖酐, analytical standard, 270,000
Supelco
右旋糖酐, analytical standard, 1,000
Sigma-Aldrich
葡聚糖 来源于肠系膜明串珠菌, Mr ~200,000
Supelco
右旋糖酐, analytical standard, 12,000
Sigma-Aldrich
葡聚糖 来源于明串珠菌 属, Mr 15,000-25,000
Sigma-Aldrich
葡聚糖 溶液 来源于肠系膜明串珠菌, 20 % (w/w) (Autoclaved)
Sigma-Aldrich
葡聚糖 来源于肠系膜明串珠菌, Mr ~60,000