Merck
CN
  • Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies.

Characterizing the structure of lipodisq nanoparticles for membrane protein spectroscopic studies.

Biochimica et biophysica acta (2014-05-24)
Rongfu Zhang, Indra D Sahu, Lishan Liu, Anna Osatuke, Raven G Comer, Carole Dabney-Smith, Gary A Lorigan
摘要

Membrane protein spectroscopic studies are challenging due to the difficulty introduced in preparing homogenous and functional hydrophobic proteins incorporated into a lipid bilayer system. Traditional membrane mimics such as micelles or liposomes have proved to be powerful in solubilizing membrane proteins for biophysical studies, however, several drawbacks have limited their applications. Recently, a nanosized complex termed lipodisq nanoparticles was utilized as an alternative membrane mimic to overcome these caveats by providing a homogeneous lipid bilayer environment. Despite all the benefits that lipodisq nanoparticles could provide to enhance the biophysical studies of membrane proteins, structural characterization in different lipid compositions that closely mimic the native membrane environment is still lacking. In this study, the formation of lipodisq nanoparticles using different weight ratios of POPC/POPG lipids to SMA polymers was characterized via solid-state nuclear magnetic resonance (SSNMR) spectroscopy and dynamic light scattering (DLS). A critical weight ratio of (1/1.25) for the complete solubilization of POPC/POPG vesicles has been observed and POPC/POPG vesicles turned clear instantaneously upon the addition of the SMA polymer. The size of lipodisq nanoparticles formed from POPC/POPG lipids at this weight ratio of (1/1.25) was found to be about 30 nm in radius. We also showed that upon the complete solubilization of POPC/POPG vesicles by SMA polymers, the average size of the lipodisq nanoparticles is weight ratio dependent, when more SMA polymers were introduced, smaller lipodisq nanoparticles were obtained. The results of this study will be helpful for a variety of biophysical experiments when specific size of lipid disc is required. Further, this study will provide a proper path for researchers working on membrane proteins to obtain pertinent structure and dynamic information in a physiologically relevant membrane mimetic environment.

材料
货号
品牌
产品描述

Sigma-Aldrich
甘油, for molecular biology, ≥99.0%
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
甘油, ACS reagent, ≥99.5%
Sigma-Aldrich
甘油, ≥99.5%
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
甘油, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
马来酸, ReagentPlus®, ≥99% (HPLC)
Supelco
甘油, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
哌嗪, ReagentPlus®, 99%
Sigma-Aldrich
甘油, BioXtra, ≥99% (GC)
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
HEPES缓冲溶液, 1 M in H2O
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
甘油, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Supelco
马来酸, Standard for quantitative NMR, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Supelco
氯化钠, reference material for titrimetry, certified by BAM, ≥99.5%
Sigma-Aldrich
甘油 溶液, 83.5-89.5% (T)
Sigma-Aldrich
甘油, meets USP testing specifications
Supelco
氯化钠, Pharmaceutical Secondary Standard; Certified Reference Material
USP
甘油, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
SAFC
HEPES
Sigma-Aldrich
甘油, FCC, FG